

Peter and Olaf Harken, Founders

A LOT OF THINGS, HAPPY AND LESS SO, HAVE HAPPENED SINCE WE LAST WROTE A CATALOG LETTER LIKE THIS.

We lost Olaf Harken who passed away after a noble battle with Parkinson's Disease. His wisdom will walk our hallways forever. We also lost Patrick Rieupeyrout, Managing Director of Harken France and a giant in French sailing; we miss him tremendously. Then COVID-19 descended with its demands on Harken and sailors everywhere. Throughout it all, we at Harken did what we do: We faced a fierce headwind but persevered, working hard to build something better.

The best news from Harken? In this past year, we proudly accomplished the handoff of the ownership of the company from Peter and Olaf's family to the U.S. employees with the formation of an ESOP (Employee Stock Ownership Plan).

Harken will always be Peter and Olaf's company, but it is now in the care and custody of their employees. We all believe this is the best way to achieve stability and provide for our employees' future while letting Harken continue to be Harken. Importantly, the transition allows for continued growth. In September 2020, we welcomed our longtime Dutch partners, On Deck, to the global Harken team.

Possibly the best part of this is that Peter is now an employee...and needs to punch in like the rest of us!

Through it all, we've proven (as we did during the global economic crisis of the early 2000s when we brought U.S. production inside the company and built our U.S. and Italian factories): during challenging times, you can count on Harken to keep innovating. This time, due to many unsung heroes, we've been able to keep doing what we do without major interruption. And we've designed and launched important new products...Grand Prix winches, hydraulics, and a new cruising furler line—all over the past 13 months.

Our stability actually keeps us up at night. How can you be both 'solid' and transform sailing at the same time?

We rely on a document we call our Weather Mark to navigate situations like these. This time we're leaning on the second element, "Make the best products at a fair price." We hope we're right about this: If the products truly are the best, then nobody's just buying Harken because it's the safest decision.

Here's the whole Weather Mark:

Keep the well-being of your people first.

Make the best products at a fair price.

Service your customers beyond their expectations.

Never lose the basic judgment you've been taught: your sense of right from wrong.

These are our values. This is Harken. Our future is in our own hands thanks to the vision of our founders. With focus on the horizon, we sail from here.

SMALL BOAT BLOCKS

15 - 41

BIG BOAT BLOCKS 42 - 64

COMPLEMENTARY HARDWARE

65 - 91

TRAVELERS & GENOA LEADS

92 - 127

MAINSAIL HANDLING SYSTEMS

129 - 156

HEADSAIL HANDLING SYSTEMS

159 - 189

WINCHES 190 - 228

HYDRAULICS

229 - 248

276 - 289

McLube is a registered trademark of McGee Industries, Inc.

© Harken, Inc. 2022. All rights reserved. No portion of this catalog may be reproduced without the express written permission of Harken, Inc. Printed in U.S.A.

Catalog Guide

15 Small Boat Blocks

Fly Blocks

Carbo Air® Blocks

T2/T2 Ratchamatic

29 mm

40 mm

57 mm

75 mm

HTE Ratchamatic/Power3 Ratchet

Ratchet

Ratchamatic

Fiddle

Small Boat Flip-Flops/Dinghy Vang

Protexit Exit Blocks

16 mm

Micro

Classic Blocks

Bullet

Dinghy

2.25"

Hexa-Cat Bases

Two-Speed Mainsheet Systems

Midrange/Midrange Hexaratchet

42 Big Boat Blocks

Element Blocks

45 mm

60 mm

80 mm

FlatWinder Powered Block

Black Magic Air Blocks

57 mm

75 mm

100 mm

125 mm/150 mm

Air Runner Blocks/Crossover

Teardrops/Footblocks

Stainless Cruising ESP

Megayacht Blocks

Mastbase Halyard Leads

Over-The-Top/Flip Flop

High-Load Snatch

V™ Blocks

65 Complementary Hardware

Cam Cleats/Accessories

Cam Bases

Stand-Up Bases

Accessories

Self-Contained Sheaves

Big Boat Sheaves

V Sheaves

High-Load/Narrow/Steering Sheaves

40 & 50 mm Deck Organizers

Big Boat Deck Organizers

Spinnaker Pole Cars

Soft Attachments

Stainless Steel Shackles

Evestraps

Folding Padeyes/Padeyes

Fixed & Removable Padeyes

Lead Rings

GP Jib Leads/

Bolt-Down Fairleads

Halyard Tensioners/Tiller Extension

92 Travelers & Genoa Leads

Dinghy Pinstop Jib Leads

Crossbow Pivoting Self-Tacking

Jib Traveler System

CB Captive Ball Bearing Travelers &

Genoa Lead Cars

22 mm Small Boat

27 mm Midrange

32 mm Big Boat

Windward Sheeting

CRX Roller

42 mm Mini-Maxi

64 mm Maxi

Curved Track

T-Track Genoa Lead Cars

Access Rail System

128 Marine Grip

129 Mainsail Handling Systems

Battcar Systems

T-Track Switch Battcar Systems

Trysail Switch

Furling Mainsail/Outhaul Systems/

Lazy Jacks

156 Vang-Master

157 Headsail Handling Systems

Carbo Racing Foil

Small Boat Furling Components

Reflex Furling

MKIV Ocean

MKIV

MKIV Underdeck

MKIV Hydraulic

Accessories

169 McLube® Products

190 Winches

SnubbAir

Radial

Aluminum

Chrome

White

Bronze Powered

Electric & Hydraulic Motors

Unipower

Rewind

Performa

Electric & Hydraulic

Electric Components

Digital System Switch

CLR Mooring Winches

Aluminum

Stainless Steel Bronze

Carbon Fiber

Air® Winches

Pedestals

Pedestal Drive Components

Handles

Service Kits

Electric & Hydraulic Captive Reel

Line Tensioners

229 Hydraulics

Integral Backstay Adjuster

Cylinders

Locking Cylinders Double-pull Cylinders

Cylinder Blocks & Toggles

Boom Vangs

Grand Prix Cylinders

Valves & Manifolds

MVP-1 & MVP-4 Control Panels

Compact Control Panels

Pumps Rotary Pumps

Reservoirs/Pump Handles

Accessories

Power Systems

249 Materials & Properties

251 Reference

Warranty/Warnings

Trademarks

Maintenance

Genoa Lead Car

Traveler

Mainsheet

Boom Vang

Outhaul Cunningham

Mastbase & Cabin Top Spinnaker

Spinnaker Pole Handling

Backstay Adjuster

Mainsail Reefing Self-Tacking Jibs/Staysail

Metric Conversions/Drilling Guide

Ball Bearing Replacement Chart

Rigging Breaking Loads Loading Formulas

276 Index

Fly Blocks

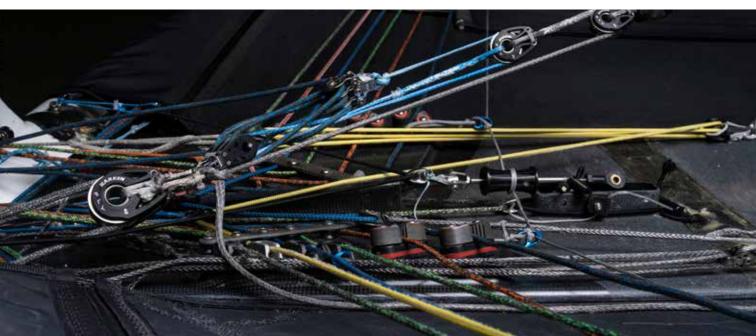
Harken soft-attach Fly blocks are designed to provide strength without mass, providing sailors with big power in a low-aero package. Designed specifically for high-tech line, these efficient blocks have an incredible working load for their small size. Fly blocks are perfect for use on foiling dinghies and sportboats and for vang cascades and backstay systems on Grand-Prix racers.

18 mm

18 mm blocks feature an integrated stainless steel inner race and rivet, stainless steel ball bearings, and composite fiber-reinforced sideplates.

20 & 40 mm

29 and 40 mm blocks feature a one-piece titanium outer race/sheave, stainless steel ball bearings and inner race, and composite fiber-reinforced sideplates.



Use the 2161 "tight cinching" 18 mm in applications where the block needs to be secured extremely close to the deck.

Part		She: Ø		Len	gth	We	eight	Max Ø		Maxi workin			iking ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	lb	kg	lb	kg
2158	18 mm double	23/32	18	1 3/32	28	.6	17	3/16	5	450	204	1500	680
2161	18 mm single/narrow	23/32	18	1 3/32	28	.25	7.2	3/16	5	275	125	992	450
2171	29 mm single*	1 1/8	29	1 3/4	44	.92	26	9/32	7	770	350	1540	700
2173	40 mm single*	1 9/16	40	2 5/16	58	2.2	62.2	11/32	9	1435	650	2870	1300
2180	18 mm triple	23/32	18	1 3/32	28	1	28.4	3/16	5	600	272	1100	499
2698	18 mm single	23/32	18	1 3/32	28	.25	7.2	3/16	5	275	125	992	450

^{*}Lashing line not included.

CARBO AIR BLOCKS

These smooth-running powerful performers make trimming easy, no matter how hard the wind blows. Carbo Air blocks are made of tough reinforced composite in a size and style to fit any system: singles, doubles, triples, quads, and quints; ratchets and fiddles; soft and hard attach; 18 - 75 mm. Perfect for main, jib and spinnaker sheets on dinghies and sportboats; control lines on boats of all sizes.

High-strength, lightweight

- · Lightweight, strong and reliable fiber-reinforced composite construction.
- Open Air block design eliminates unnecessary material to reduce weight.

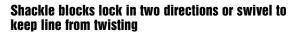
Stands up to sun, salt, and time

· Ball bearings, sheave, and sideplates are UV-stabilized.

Low-friction efficiency for fast trim and release

 Free-running ball bearings roll on curved races, efficiently dispersing load for a higher strength block.

Materials For properties see pages 249-250.


Delrin® acetal resin, **UV-stabilized:** Ball bearings

Carbo composite: Sideplates, sheave

· Cam-Lock or U-Lock allows shackle to be fixed or to swivel.

Carbo T2 Soft-Attach Blocks

Harken offers these patented, high-strength, soft-attach blocks in 29 to 57 mm sizes. They feature composite sheaves that spin freely on Delrin® ball bearings with curved bearing races. They have no metal shackles or rivets, making them the lightest soft-attach blocks Harken has ever designed.

All T2 blocks are lashed or spliced through the load-bearing center of the block, decreasing the loads on the sideplates and acting as a safety backup for the system.

T2 Blocks

2146

2149

2152

2147

2150

2153

T2 blocks come in single and double configurations and can be tied, spliced, or lashed to almost anything. T2 doubles feature composite line guides that are integrated into the block head. They keep the block aligned correctly by pushing the lashing line to the outer edges of the block's head.

T2 Loop Blocks

The T2 Loop block's on/off loop system slides through the block head and over the anchor post for a secure connection. A SK75 Dyneema® loop is included. Replacement loops available.

T2 Ratchamatic Blocks

The patented T2 Ratchamatic is Harken's newest block to feature the T2 line's styling and soft-attachment system. Pressure on the line engages the ratchet mechanism, which switches seamlessly from free-running to ratchet mode. Unloaded main and jib sheets run out freely during mark roundings, and asymmetrical spinnaker sheets free instantly during jibes.

The weight of this high-strength block is only a few ounces. This is thanks to composite fiber-reinforced sideplates, hardcoat-anodized aluminum sheave, a lightweight soft-attach, and a minimum of moving parts in the ratcheting mechanism.

2162

T2 L00P

2148

A length of Spectra® line with a polyester cover is included.

Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates. Dyneema is a registered trademark of DSM IP Assets B.V. L.L.C. Spectra is a registered trademark of Honeywell International, Inc.

T2 block with open center
Line ties, splices, or lashes to
almost anything: cascades, bridles,
traveler controls.

72 Loop block with anchor postLoops deadend on anchor post
for easy installation. No knots
or splices needed. Slide the loop
through the head and over the anchor
post for a secure connection.

T2 Ratchamatic blockBlocks are clearly labeled with highcontrast directional markers for correct
reeving and trimming direction.

57 mm T2 Ratchamatic blocks are also available with Power3 sheaves which offer holding power options suitable for a variety of wind conditions. Contact Harken for more information.

Part		She:		Lenç	jth	We	ight	Max		Maxi workin			king ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	lb	kg	lb	kg
T2													
2146	Single	1 1/8	29	1 11/16	43	.4	12	5/16	8	330	150	1000	454
2147	Double	1 1/8	29	1 11/16	43	.83	23.5	5/16	8	600	272	1900	861
2149	Single	1 9/16	40	2 1/4	57	.9	25	3/8	10	485	220	1200	544
2150	Double	1 9/16	40	2 1/4	57	1.7	48	3/8	10	700	317	2100	952
2152	Single	2 1/4	57	3 1/16	79	2	57	7/16	11	792	359	2380	1080
2153	Double	2 1/4	57	3 1/16	79	3.8	107.5	7/16	11	1080	490	3200	1451
2162	Traveler	1 9/16	40	3 15/32	88	1.4	39	3/16	5	275	125	992	450
T2 Loop													
2148	Single*	1 9/16	40	2 1/4	57	.92	26	3/8	10	485	220	1200	544
2151	Single**	2 1/4	57	3 1/16	79	2	59	7/16	11	792	359	2380	1080
T2 Ratcham	atic												
2159	Single	1 9/16	40	2 1/4	57	.9	25	3/8	10	300	136	1000	454
2160 / .RED	Single	2 1/4	57	3 1/16	79	2.5	71	3/8	10	500	227	2000	907

Doubles and triples feature U-Locks to hold the swivel in front/side position, or to let it spin freely.

Use as becket block without the additional height of a becket.

High-strength pivoting lead blocks with cams are used for halyard controls on larger keelboats and as "headknockers" on dinghies and beachcats for sheeting directly from the boom. Hole spacing and rivet size are the same as Classic models, making upgrades easy. Cam reverses for either up or down cleating.

Part		She Ø	_	Lenç	jth	We	ight	Shack Ø	le pin	Max	line)	Maxi workin		Brea loa	
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
340	Single/swivel	1 1/8	29	2 5/8	66	.9	26	5/32	4	5/16	8	330	150	1000	454
341	Single/swivel/becket	1 1/8	29	3 1/16	78	1	28	5/32	4	5/16	8	330	150	1000	454
342	Double/swivel	1 1/8	29	2 7/8	73	1.8	51	3/16	5	5/16	8	660	299	1625	737
343	Double/swivel/becket	1 1/8	29	3 3/8	85	1.9	54	3/16	5	5/16	8	660	299	1625	737
344	Triple/swivel	1 1/8	29	2 7/8	73	2.6	74	3/16	5	5/16	8	990	449	2000	907
345	Triple/swivel/becket	1 1/8	29	3 3/8	85	2.7	77	3/16	5	5/16	8	990	449	2000	907
346	Triple/471 Carbo-Cam**	1 1/8	29	2 7/8	73	4.6	130	3/16	5	1/4	6	750	340	1500	680
347	Triple/471 Carbo-Cam/becket**	1 1/8	29	3 3/8	85	4.7	133	3/16	5	1/4	6	900	408	1800	816
348	Single/fixed*	1 1/8	29	1 15/16	49	.8	23			5/16	8	330	150	1000	454
349	Stand-up/fixed*	1 1/8	29	2 3/16	56	1.1	31			5/16	8	330	150	1000	454
350	Cheek	1 1/8	29	2 1/8	53	.6	17			5/16	8	330	150	1000	454
352	90° fixed head*	1 1/8	29	2 1/16	52	.9	26			5/16	8	330	150	1000	454
353	Traveler	1 1/8	29	3 5/8	92	1.2	34			5/16	8	330	150	1000	454
371	Clew block assembly	1 1/8	29	4 7/8	124	1.8	51			5/16	8	330	150	1000	454
381	Double/fixed	1 1/8	29	2 1/8	54	1.2	34			5/16	8	660	299	1625	737
395	Pivoting lead block/468 Cam-Matic**	1 1/8	29	3 15/16	100	3.2	90.7			1/4	6	200	91	650	295
396	Pivoting lead block/471 Carbo-Cam**	1 1/8	29	3 15/16	100	2.96	83.7			1/4	6	150	68	650	295

^{*}Can be used as becket block. **Maximum working loads and breaking loads for blocks based on cam strengths.

40 mm Blocks

About Carbo Air blocks: see feature page at beginning of this section.

Melges 14, 4.27 m (14'), Reichel/Pugh design, Melges © Mari Johnson

Reversible cam arms.

Use as becket block without the additional height of a becket.

Part		Shea Ø	ave	Lenç	jth	We	ight	Shack	le pin J		line Ø	Maxi workin		Brea loa	. •
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
2163	Cheek/becket	1 9/16	40	2 29/32	74	4.9	139			3/8	10	485	220	1620	735
2636	Single/swivel	1 9/16	40	3 3/8	86	1.6	44	5/32	4	3/8	10	485	220	1620	735
2637	Single/swivel/becket	1 9/16	40	4	102	1.7	48	5/32	4	3/8	10	485	220	1620	735
2644	Cheek	1 9/16	40	2 3/4	70	1.2	34			3/8	10	485	220	1620	735
2645	Single/swivel/471 Carbo-Cam**	1 9/16	40	3 3/8	86	4.2	119	5/32	4	1/4	6	150	68	300	136
2646	Single/swivel/471 Carbo-Cam/becket**	1 9/16	40	4	102	4.3	122	5/32	4	1/4	6	300	136	600	272
2649	Traveler	1 9/16	40	4 1/4	108	1.8	52			5/16	8	330	150	1000	454
2650	Single/fixed*	1 9/16	40	2 1/2	64	1.4	40			3/8	10	485	220	1620	735
2652	Stand-up/fixed*	1 9/16	40	2 3/4	70	1.7	48			3/8	10	485	220	1620	735
2659	90° fixed head*	1 9/16	40	2 15/16	75	1.6	44			3/8	10	485	220	1620	735

^{*}Can be used as becket block. **Maximum working loads and breaking loads for blocks based on cam strengths.

High-strength pivoting lead blocks with cams are used for halyard controls on larger keelboats and as "headknockers" on dinghies and beachcats for sheeting directly from the boom. Hole spacing and rivet size are the same as Classic models, making upgrades easy. Cam reverses for either up or down cleating.

2642

2654

Part		Shea Ø	ave	Lenç	gth	We	eight	Shack Ø			line Ø	Maxii workin			king ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
2156	Pivoting lead block/150 Cam-Matic* **	1 9/16	40	4 1/2	112	6.6	186			3/8	10	300	136	950	430
2157	Pivoting lead block/365 Carbo-Cam* **	1 9/16	40	4 1/2	112	5.5	157			3/8	10	200	91	950	430
2638	Double/swivel	1 9/16	40	3 11/16	94	3.2	86	3/16	5	3/8	10	970	440	2380	1080
2639	Double/swivel/becket	1 9/16	40	4 5/16	110	3.4	90	3/16	5	3/8	10	970	440	2380	1080
2640	Triple/swivel	1 9/16	40	3 11/16	94	4.6	118	3/16	5	3/8	10	1455	660	3050	1383
2641	Triple/swivel/becket	1 9/16	40	4 5/16	110	4.7	122	3/16	5	3/8	10	1455	660	3050	1383
2642	Double/fixed	1 9/16	40	3 1/2	89	2.8	80	3/16	5	3/8	10	970	440	2380	1080
2643	Double/fixed/becket	1 9/16	40	4 3/16	106	2.9	84	3/16	5	3/8	10	970	440	2380	1080
2647	Triple/swivel/471 Carbo-Cam**	1 9/16	40	3 11/16	94	8.2	232	3/16	5	1/4	6	750	340	1500	680
2648	Triple/swivel/471 Carbo-Cam/becket**	1 9/16	40	4 5/16	110	8.3	235	3/16	5	1/4	6	900	408	1800	816
2654	Quad/swivel	1 9/16	40	3 11/16	94	6	170	3/16	5	3/8	10	1455	660	3050	1383

2647

2648

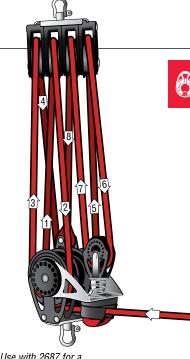
2643

^{*}Can be used as becket block. **Maximum working loads and breaking loads for blocks based on cam strengths.

57 mm Blocks

About Carbo Air blocks: see feature page at beginning of this section.

Part		She Ø		Len	gth	Wei	ight	Shack	le pin		c line Ø	Maxi workin			iking ad
No.	Description	in	mm	in	mm	OZ	g	in	mm	in	mm	lb	kg	lb	kg
2600	Single/swivel	2 1/4	57	4 5/16	110	3.1	87	3/16	5	3/8	10	792	359	2380	1079
2601	Single/swivel/becket	2 1/4	57	5 3/16	132	3.4	96	3/16	5	3/8	10	792	359	2380	1079
2602	Double/swivel	2 1/4	57	4 3/4	121	6.3	178	1/4	6	3/8	10	1584	720	3300	1500
2603	Double/swivel/becket	2 1/4	57	5 5/8	142	6.6	187	1/4	6	3/8	10	1584	720	3300	1500
2604	Triple/swivel	2 1/4	57	4 3/4	121	9	255	1/4	6	3/8	10	2380	1080	5000	2270
2605	Triple/swivel/becket	2 1/4	57	5 5/8	142	9.3	264	1/4	6	3/8	10	2380	1080	5000	2270
2606	Cheek	2 1/4	57	3 5/8	92	2.4	68			3/8	10	792	359	2380	1079
2615	Single/swivel/150 Cam-Matic*	2 1/4	57	4 5/16	110	9.5	269	3/16	5	3/8	10	300	136	750	340
2616	Single/swivel/150 Cam-Matic/becket*	2 1/4	57	5 3/16	132	15.6	442	3/16	5	3/8	10	600	272	1500	680
2617	Triple/swivel/150 Cam-Matic*	2 1/4	57	4 3/4	121	15.2	431	1/4	6	3/8	10	1500	680	3750	1700
2618	Triple/swivel/150 Cam-Matic/becket*	2 1/4	57	5 5/8	142	15.6	442	1/4	6	3/8	10	1800	816	4500	2040
2631	Quadruple/swivel	2 1/4	57	4 3/4	121	12	340	1/4	6	3/8	10	2380	1080	5000	2270
2762	5-sheave/swivel	2 1/4	57	4 3/4	121	15.8	448	1/4	6	3/8	10	2380	1080	5000	2270


^{*}Maximum working loads and breaking loads for blocks based on cam strengths.

75 mm Blocks

About Carbo Air blocks: see feature page at beginning of this section.

Part		Shea Ø	ive	Len	gth	Wei	ght	Shack	le pin J	Max	line Ø	Maxi workin		Brea lo:	
No.	Description	in	mm	in	mm	OZ	g	in	mm	in	mm	lb	kg	lb	kg
2660	Single/swivel	2 15/16	75	5 3/8	137	6.9	195	1/4	6	9/16	14	1213	550	3638	1650
2661	Single/swivel/becket	2 15/16	75	6 1/2	165	7.5	214	1/4	6	9/16	14	1213	550	3638	1650
2662	Double/swivel	2 15/16	75	6	152	14.2	402	5/16	8	9/16	14	2426	1100	6000	2722
2663	Double/swivel/becket	2 15/16	75	7	178	14.8	419	5/16	8	9/16	14	2426	1100	6000	2722
2664	Triple/swivel	2 15/16	75	6	152	20.5	580	5/16	8	9/16	14	3639	1650	10000	4535
2665	Triple/swivel/becket	2 15/16	75	7	178	21.1	599	5/16	8	9/16	14	3639	1650	10000	4535
2666	Single/swivel/150 Cam-Matic*	2 15/16	75	5 3/8	137	13.4	381	1/4	6	1/2	12	300	136	750	340
2667	Single/swivel/150 Cam-Matic/becket*	2 15/16	75	6 1/2	165	14	397	1/4	6	1/2	12	600	272	1500	680
2668	Triple/swivel/150 Cam-Matic*	2 15/16	75	6	152	27.8	788	5/16	8	1/2	12	1500	680	3750	1700
2669	Triple/swivel/150 Cam-Matic/becket*	2 15/16	75	7	178	28.4	805	5/16	8	1/2	12	1800	816	4500	2040
2677	Quadruple/swivel	2 15/16	75	6 1/4	159	27.2	772	5/16	8	9/16	14	3639	1650	10000	4535

^{*}Maximum working loads and breaking loads for blocks based on cam strengths.

Ratchamatic HTE Blocks

The spring on the HTE (high-threshold engage) version of the 57 mm Carbo Ratchamatic blocks was made stiffer to delay the point where the ratchet engages, allowing the block to run free more of the time. The ratchet function engages at higher loads to allow the old kite sheet to run free for crisper gybes.

Pressure on the line engages the ratchet mechanism, which switches seamlessly from free-running to ratchet mode.

Part		She Ø		Len	gth	We	ight	Shack Ø	x '	Max	line Ø	Maxi workin		Brea loa		Holding
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg	power*
2625.HTE	Single/swivel/standard grip	2 1/4	57	4 1/16	103	3.7	104	3/16	5	3/8	10	500	227	2000	907	10:1
2165.HTE	Single/swivel/1.5x grip	2 1/4	57	4 1/16	103	3.7	104	3/16	5	3/8	10	500	227	2000	907	15:1
2168.HTE	Single/swivel/2x grip	2 1/4	57	4 1/16	103	3.7	104	3/16	5	3/8	10	500	227	2000	907	20:1

^{*}Measured with 180° wrap.

Power3 **Ratchet Blocks**

Power3 ratchet blocks provide sailors that race small one-designs with three holding-power options to handle a variety of wind and sea conditions. More choices allow sailors to fine-tune their set-ups in tandem with the purchase that provides the ideal level of power, responsiveness and grip.

Standard grip: medium/light air 1.5x grip: breeze-on/puffs 2x grip: big breeze/steady

2135 2166 2169 2670 2174 2176

SWITCHABLE

2625 2165 2168 2680 2175 2177

2160 2167 2170

RATCHAMATIC

T2 RATCHAMATIC

Part		She:		Len	gth	We	ight	Shack (le pin 3	Max			mum ig load	Brea loa	•	Holding
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg	power*
Switch	able Ratchets															
2135	Single/swivel/standard grip	2 1/4	57	4 1/16	103	3	85	3/16	5	3/8	10	500	227	2000	907	10:1
2166	Single/swivel/1.5x grip	2 1/4	57	4 1/16	103	3	85	3/16	5	3/8	10	500	227	2000	907	15:1
2169	Single/swivel/2x grip	2 1/4	57	4 1/16	103	3	85	3/16	5	3/8	10	500	227	2000	907	20:1
2172	57 mm two-pack/1.5x & 2x grip	2 1/4	57													
2670	Single/swivel/standard grip	2 15/16	75	5 3/8	137	8	227	1/4	6	7/16	12	750	341	3000	1361	15:1
2174	Single/swivel/1.5x grip	2 15/16	75	5 3/8	137	8	227	1/4	6	7/16	12	750	341	3000	1361	22:1
2176	Single/swivel/2x grip	2 15/16	75	5 3/8	137	8	227	1/4	6	7/16	12	750	341	3000	1361	30:1
Ratcha	matic															
2625	Single/swivel/standard grip	2 1/4	57	4 1/16	103	3.7	104	3/16	5	3/8	10	500	227	2000	907	10:1
2165	Single/swivel/1.5x grip	2 1/4	57	4 1/16	103	3.7	104	3/16	5	3/8	10	500	227	2000	907	15:1
2168	Single/swivel/2x grip	2 1/4	57	4 1/16	103	3.7	104	3/16	5	3/8	10	500	227	2000	907	20:1
2680	Single/swivel/standard grip	2 15/16	75	5 3/8	137	8.4	238	1/4	6	7/16	12	750	341	3000	1361	15:1
2175	Single/swivel/1.5x grip	2 15/16	75	5 3/8	137	8.4	238	1/4	6	7/16	12	750	341	3000	1361	22:1
2177	Single/swivel/2x grip	2 15/16	75	5 3/8	137	8.4	238	1/4	6	7/16	12	750	341	3000	1361	30:1
T2 Soft	-Attach Ratchamatic															
2160	Single/standard grip	2 1/4	57	3 1/16	79	2.5	71			3/8	10	500	227	2000	907	10:1
2167	Single/1.5x grip	2 1/4	57	3 1/16	79	2.5	71			3/8	10	500	227	2000	907	15:1
2170	Single/2x grip	2 1/4	57	3 1/16	79	2.5	71			3/8	10	500	227	2000	907	20:1

Ratchet Blocks

Carbo ratchet blocks allow sailors to hand-hold loaded lines and offer balance between holding power and controlled easing.

Nylon-resin sideplates are densely packed with long-glass fibers for a compact block with a high strength-to-weight ratio. Machined aluminum sheaves are Hard Lube-anodized for strength and corrosion resistance. Eight facets hold line securely. Ball bearings, sheave, and sideplates are UV-stabilized with carbon black for maximum protection.

40 mm

The 40 mm ratchets are ideal for jib sheets and spinnakers where size and weight are critical. The 2608, 2609, and 2614 have on/off switches; other 40 mm ratchets are always in ratchet mode.

57 mm and 75 mm

The 57 mm and 75 mm switchable ratchets provide precise control with an accessible on/off switch that is easy-to-operate from both sides of the block.

For the ultimate system, mount a switchable ratchet in the cockpit and a boom-mounted Ratchamatic block directly above for double holding power in heavy air and a freerunning mainsheet when it's light. The 75 mm provides up to 15:1 holding power; the 57 mm 10:1.

About Carbo Air blocks: see feature page at beginning of this section.

On/off switch operates from both sides.

All 57 mm and 75 mm ratchet blocks are also available with Power3 sheaves which offer holding power options suitable for a variety of wind conditions. Contact Harken for more information.

Switch locks shackle in front or side positions, or lets block swivel to keep line from twisting.

Part		Shea Ø	ive	Len	gth	Wei	ight	Shack Ø	le pin	Max	line 3	Maxi workin		Brea lo:	•
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
40 mm															
2608	Single/swivel	1 9/16	40	3 3/8	86	1.7	49	5/32	4	3/8	10	300	136	1000	454
2609	Single/swivel/becket	1 9/16	40	4	102	1.8	52	5/32	4	3/8	10	300	136	1000	454
2610	Single/swivel/471 Carbo-Cam**	1 9/16	40	3 3/8	86	4.6	129	5/32	4	1/4	6	150	68	300	136
2611	Single/swivel/471 Carbo-Cam/becket**	1 9/16	40	4	102	4.7	132	5/32	4	1/4	6	300	136	600	272
2614	Cheek*	1 9/16	40	2 3/4	70	1.6	44			3/8	10	300	136	1000	454
57 mm															
2135 / .RED	Single/swivel	2 1/4	57	4 1/16	103	3	85	3/16	5	3/8	10	500	227	2000	907
2136	Single/swivel/becket	2 1/4	57	4 15/16	125	3.3	94	3/16	5	3/8	10	500	227	2000	907
2137	Cheek*	2 1/4	57	3 1/4	83	2.5	71			3/8	10	500	227	2000	907
2138	Single/swivel/150 Cam-Matic**	2 1/4	57	4 1/16	103	8.7	247	3/16	5	3/8	10	300	136	750	340
2139	Single/swivel/150 Cam-Matic/becket**	2 1/4	57	4 15/16	125	9	255	3/16	5	3/8	10	600	272	1500	680
2178	Double/swivel	2 1/4	57	4 9/16	116	6.9	195	1/4	6	3/8	10	750	340	1875	851
75 mm															
2670	Single/swivel	2 15/16	75	5 3/8	137	8	227	1/4	6	7/16	12	750	341	3000	1361
2671	Single/swivel/becket	2 15/16	75	6 1/2	165	8.75	248	1/4	6	7/16	12	750	341	3000	1361
2672	Cheek*	2 15/16	75	4 1/16	103	6.3	179			7/16	12	750	341	3000	1361

Ratchet Blocks

About Carbo Air blocks: see feature page at beginning of this section.

Cam assembly adjusts and locks in a range of positions for crew accessibility.

40 mm Actual size

57 mm Actual size

75 mm Actual size

Part		She: Ø	ave i	Len	gth	We	ight		de pin Ø	Max (line J	Maxi workin			iking ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
40 mm	1														
2612	Triple/swivel/471 Carbo-Cam*	1 9/16	40	3 11/16	94	8.5	242	1/4	6	3/16	5	750	340	1500	680
2613	Triple/swivel/471 Carbo-Cam/becket*	1 9/16	40	4 5/16	110	8.6	245	1/4	6	3/16	5	900	408	1800	816
2619	Triple/471 Carbo-Cam/29 mm block/becket*	1 9/16	40	4 3/4	121	9.5	269	1/4	6	3/16	5	900	408	1800	816
57 mm	ı														
2140	Triple/swivel/150 Cam-Matic*	2 1/4	57	4 1/16	103	15.4	435	1/4	6	3/8	10	1500	680	3750	1700
2141	Triple/swivel/150 Cam-Matic/hecket*	2 1/4	57	4 15/16	125	15.7	445	1/4	6	3/8	10	1800	816	4500	2041

^{*}Maximum working loads and breaking loads for blocks based on cam strengths.

Ratchamatic Blocks

The Carbo Ratchamatic is a load-sensing ratchet block that rolls freely in both directions under low loads and automatically engages the ratchet as loads increase. Shifting between ratchet and light-air modes is seamless. Unloaded main and jib sheets run out freely during mark roundings and asymmetrical spinnakers free instantly during jibes.

Ratchet engagement may be adjusted to a higher or lower load according to strength and sailing style. The Ratchamatic cheek block mounts on either port or starboard. The holding power of the 57 mm is as high as 10:1. The 75 mm is up to 15:1.

For the ultimate system, mount a Ratchamatic block on the boom above a cockpit-mounted switchable ratchet to allow the mainsheet to run freely in light air and to double holding power in heavy air.

Use the 2634 with a 402 or 403 swivel arm for a versatile two-speed mainsheet system.

About Carbo Air blocks: see feature page at beginning of this section.

2684

2682

Adjustable ratchet engagement adapts block to a variety of applications.

Eight-faceted, Hard Lube-anodized aluminum sheave holds line securely.

All 57 mm and 75 mm Ratchamatic blocks are also available with Power3 sheaves which offer holding power options suitable for a variety of wind conditions. In addition, all 57 mm Ratchamatic blocks can be made with HTE (high threshold engage) sheaves to delay ratchet engagement, allowing them to run freely more of the time. Contact Harken for more information.

DN iceboat © Marcella Grunert

		She:		Len	gth	We	ight	Shack	de pin Ø	Max		Maxi workin	mum g load	Brea lo:	king ad	Holding power w/180° wrap
Part No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg	50 lb (23 kg)
57 mm																
2625 / .RED	Single	2 1/4	57	4 1/16	103	3.7	104	3/16	5	3/8	10	500	227	2000	907	10:1
2626 / .RED	Single/becket	2 1/4	57	4 15/16	125	4	113	3/16	5	3/8	10	500	227	2000	907	10:1
2627	Single/150 Cam-Matic**	2 1/4	57	4 1/16	103	9.4	266	3/16	5	3/8	10	300	136	750	340	10:1
2628	Single/150 Cam-Matic/becket**	2 1/4	57	4 15/16	125	9.7	275	3/16	5	3/8	10	600	272	1500	680	10:1
2633	Cheek*	2 1/4	57	3 1/4	83	3.1	89			3/8	10	500	227	2000	907	10:1
75 mm																
2680	Single	2 15/16	75	5 3/8	137	8.4	238	1/4	6	7/16	12	750	341	3000	1361	15:1
2681	Single/becket	2 15/16	75	6 1/2	165	9	255	1/4	6	7/16	12	750	341	3000	1361	15:1
2682	Cheek*	2 15/16	75	4 1/16	103	6.5	184			7/16	12	750	341	3000	1361	15:1
2683	Single/150 Cam-Matic**	2 15/16	75	5 7/16	138	15.5	440	1/4	6	7/16	12	300	136	750	340	15:1
2684	Single/150 Cam-Matic/becket**	2 15/16	75	6 1/2	165	15.5	440	1/4	6	7/16	12	600	272	1500	680	15:1

^{*}Includes RH fasteners and mounting pad. **Maximum working loads and breaking loads for blocks based on cam strengths.

Ratchamatic Blocks

About Carbo Air blocks: see feature page at beginning of this section.

DNA F1 A-Cat, Mischa Heemskerk, 5.49 m, DNA Performance Yachts © DNA Performance Sailing

Use with 2631/2677 for a powerful 8:1 purchase.

75 mm Actual size

57 mm Actual size

Part		Shea Ø	ive	Lenç	gth	Wei	ight	Shack	de pin Ø	Max		Maxi workin			king ad	Holding power w/180° wrap
No.	Description	in	mm	in	mm	OZ	g	in	mm	in	mm	lb	kg	lb	kg	50 lb (23 kg)
57 mm	1															
2629	Triple/150 Cam-Matic*	2 1/4	57	4 1/16	103	14.9	421	1/4	6	3/8	10	1500	680	3750	1700	10:1
2630	Triple/150 Cam-Matic/becket*	2 1/4	57	4 15/16	125	15.2	431	1/4	6	3/8	10	1800	816	4500	2041	10:1
2632	Triple/150 Cam-Matic/40 mm block/becket*	2 1/4	57	6 1/8	156	18.3	520	1/4	6	3/8	10	1800	816	4500	2041	10:1
2634	Double	2 1/4	57	4 9/16	116	7.2	204	1/4	6	3/8	10	750	340	1875	851	10:1
75 mm	1															
2685	Triple/150 Cam-Matic*	2 15/16	75	6 3/16	137	31	879	5/16	8	7/16	12	1500	680	3750	1700	15:1
2686	Triple/150 Cam-Matic/becket*	2 15/16	75	6 1/2	165	31.6	896	5/16	8	7/16	12	1800	816	4500	2041	15:1
2687	Triple/150 Cam-Matic/57 mm block/becket*	2 15/16	75	6 1/2	165	34.7	984	5/16	8	7/16	12	1800	816	4500	2041	15:1

^{*}Maximum working loads and breaking loads for blocks based on cam strengths.

Carbo Fiddle Blocks

The Carbo fiddle block line features high-load ball bearings with fitted races for low-friction operation. The 40 mm fiddle is an excellent choice for 3:1 and 4:1 tackles on dinghy vangs and mainsheets, as well as for controls such as cunninghams and internal boom outhauls on larger boats.

The 57 mm fiddle features the Cam-Lock locking system. The switch allows the shackle to lock at 90-degree intervals or to swivel freely.

Ratchet Blocks

The 57 and 75 mm switchable ratchet blocks provide precise on/off control with accessible, easy-to-operate on/off switches on both sides of the block.

About Carbo Air blocks: see feature page at beginning of this section.

All 57 mm and 75 mm ratchet blocks are also available with Power3 sheaves which offer holding power options suitable for a variety of wind conditions. Contact Harken for more information.

Part		Shea Ø	ive	Len	gth	Wei	ght	Shack	le pin	Max		Maxi workin		Brea lo:	
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
40 mm															
2655	40 mm	1 9/16	40	4 1/2	115	1.8	51	5/32	4	3/8	10	485	220	1620	735
2656	40 mm/becket	1 9/16	40	5 1/8	131	1.9	54	5/32	4	3/8	10	485	220	1620	735
2657	40 mm/471 Carbo-Cam*	1 9/16	40	4 1/2	115	4.4	125	5/32	4	1/4	6	450	204	1500	680
2658	40 mm/471 Carbo-Cam/becket	1 9/16	40	5 1/8	131	4.5	128	5/32	4	1/4	6	485	220	1620	735
57 mm	l														
2621	57 mm	2 1/4	57	6	153	3.7	105	3/16	5	3/8	10	792	359	2380	1080
2622	57 mm/becket	2 1/4	57	6 7/8	175	4	113	3/16	5	3/8	10	792	359	2380	1080
2623	57 mm/150 Cam-Matic	2 1/4	57	6	153	10.1	286	3/16	5	3/8	10	792	359	2380	1080
2624	57 mm/150 Cam-Matic/becket	2 1/4	57	6 7/8	175	10.4	295	3/16	5	3/8	10	792	359	2380	1080
2673	57 mm/ratchet	2 1/4	57	4 5/8	118	4	113	3/16	5	3/8	10	792	359	2380	1080
2674	57 mm/ratchet/becket	2 1/4	57	5 5/8	143	4.3	121	3/16	5	3/8	10	792	359	2380	1080
2675	57 mm/ratchet/150 Cam-Matic	2 1/4	57	4 5/8	118	10.4	294	3/16	5	3/8	10	792	359	2380	1080
2676	57 mm/ratchet/150 Cam-Matic/becket	2 1/4	57	5 5/8	143	10.7	303	3/16	5	3/8	10	792	359	2380	1080
75 mm															
2690	75 mm	2 15/16	75	6 3/16	157	8.4	238	1/4	6	9/16	14	1212	550	3637	1650
2691	75 mm/becket	2 15/16	75	7 7/16	189	9.1	257	1/4	6	9/16	14	1212	550	3637	1650
2692	75 mm/150 Cam-Matic*	2 15/16	75	6 3/16	157	15	424	1/4	6	1/2	12	900	408	2250	1020
2693	75 mm/150 Cam-Matic/becket	2 15/16	75	7 7/16	189	15.6	443	1/4	6	1/2	12	1212	550	3637	1650
2694	75 mm/ratchet	2 15/16	75	6 3/16	157	9.5	270	1/4	6	1/2	12	1212	550	3637	1650
2695	75 mm/ratchet/becket	2 15/16	75	7 7/16	189	10.2	289	1/4	6	1/2	12	1212	550	3637	1650
2696	75 mm/ratchet/150 Cam-Matic*	2 15/16	75	6 3/16	157	16.1	456	1/4	6	1/2	12	900	408	2250	1020
2697	75 mm/ratchet/150 Cam-Matic/becket	2 15/16	75	7 7/16	189	16.8	475	1/4	6	1/2	12	1212	550	3637	1650

^{*}Maximum working loads and breaking loads for blocks based on cam strengths.

Small Boat 40, 57, & 75 mm Flip-Flop Blocks

Small Boat Flip-Flop blocks pivot around the line axis to keep line close to the deck. Hinged construction allows a variety of lead angles.

Lightweight, machined 6061-T6 aluminum cheeks pivot on fiber-reinforced plastic chocks. Sheave runs exclusively on a ball bearing system for fast trim and release under any load. Ball bearings, sheave, and sideplates are UV-stabilized with carbon black for maximum protection.

Ratchamatic block versions roll freely in both directions under low loads and automatically engage a ratchet mechanism as loads increase, giving sailors a holding power of up to 15:1. The ratchet engagement can be adjusted to a higher or lower load depending on the sailor's strength, sailing style and system usage.

Reversible cam arms adjust and lock in a range of positions for crew accessibility and accommodation of changing lead angles.

Block pivots around the line axis to keep line entry height low.

All 57 mm and 75 mm Ratchamatic blocks are also available with Power3 sheaves which offer holding power options suitable for a variety of wind conditions. In addition, all 57 mm Ratchamatic blocks can be made with HTE (high threshold engage) sheaves to delay ratchet engagement, allowing them to run freely more of the time. Contact Harken for more information.

Part		She		Wid	ith	Len	gth	Hei	ght	We	ight		line Ø	Maxi workin			king ad
No.	Description	in	mm	in	mm	in	mm	in	mm	0Z	g	in	mm	lb	kg	lb	kg
2181	40 mm	1 9/16	40	1 3/4	43	3 3/16	81	2 1/8	54	1.6	45	3/8	10	300	136	750	340
2182	40 mm/150 Cam-Matic*	1 9/16	40	2 9/16	66	3 3/16	81	3 1/2	87	7	200	3/8	10	300	136	750	340
2183	40 mm/468 Micro Cam-Matic*	1 9/16	40	1 7/8	48	3 3/16	81	3 1/4	82	4.1	117	1/4	6	200	91	400	181
2142	57 mm	2 1/4	57	2	50	4 5/16	110	2 1/8	54	5	141	3/8	10	500	227	1584	718
2143	57 mm/150 Cam-Matic*	2 1/4	57	2 5/8	66	4 5/16	110	4 5/16	110	11	304	3/8	10	300	136	600	272
2144	57 mm Ratchamatic	2 1/4	57	2	50	4 5/16	110	2 5/8	66	5.5	156	3/8	10	500	227	1000	554
2145	57 mm Ratchamatic/150 Cam-Matic*	2 1/4	57	2 5/8	66	4 5/16	110	4 3/16	106	12	329	3/8	10	300	136	600	272
2678	75 mm	3	75	2 1/2	64	5 5/8	143	3 3/4	95	9.7	275	9/16	14	750	340	2426	1100
2679	75 mm/150 Cam-Matic*	3	75	2 5/8	66	5 5/8	143	5 9/16	141	17	485	9/16	14	300	136	600	272
2688	75 mm Ratchamatic	3	75	2 1/2	64	5 5/8	143	3 1/2	89	11	304	7/16	12	750	340	1500	680
2689	75 mm Ratchamatic/150 Cam-Matic*	3	75	2 5/8	66	5 5/8	143	5 3/8	137	18	514	7/16	12	300	136	600	272

^{*}Maximum working loads and breaking loads for blocks based on cam strengths.

0

Protexit™ Blocks

When you race HARD, and you rip through as many hoists and douses as we do sailing W-L legs all the time, you should expect to start wearing through the sideplates of your halyard exit block right? Wrong! Thanks to Harken Protexit™ blocks, wear from side angle loading is not inevitable. Protexit's all-aluminum, wear-resistant housing carefully ushers line in and out no matter the angle. There's more: Protexit blocks offer higher working loads than any small boat exit blocks we've ever made. Protexit aluminum sheaves rotate on sleeve bearings with Delrin® sideload balls so they don't deform in extreme conditions, while reducing wear on the halyard, too.

Strong. Durable. Gentle. Protexit blocks protect the race results you work hard to achieve.

Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.

Melges 24 © Petey Crawford

Part		Shea Ø	ave	Len	gth	We	ight	Max		Faste (F	eners H)	Fastener spacing	А	В	Maxi workin	mum g load		aking ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	mm	mm	mm	lb	kg	lb	kg
1200	30 mm single	1 3/16	30	2 15/16	75	1.3	37	5/16	8	#10	5	57	18.2	45.7	550	250	1103	500
1201	30 mm double	1 3/16	30	3 13/16	97	2	57	5/16	8	#10	5	79	18.2	70.1	550	250	1103	500
1202	40 mm single	1 9/16	40	4 3/16	107	2.6	74	5/16	8	1/4	6	75	19.7	59.2	880	400	1764	800
1203	50 mm single	1 15/16	50	4 5/8	117	4.5	128	1/2	12	1/4	6	90	23.3	71.5	1760	800	3528	1600
1204	60 mm single	2 3/8	60	5 1/16	129	6.3	179	1/2	12	1/4	6	105	24.3	84	2640	1200	5292	2400
1205	40 mm single/wide sheave	1 9/16	40	4 3/16	107	4.5	127	5/16	8	1/4	6	75	30.6	59.2	880	400	1764	800

Blocks are clearly labeled with part number, line diameter, maximum working load, and directional arrows for line direction.

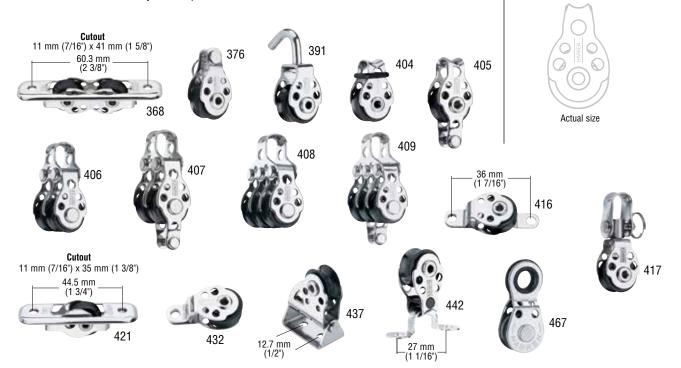
16 mm

The 16 mm is Harken's smallest block. It is perfect for small synthetic control lines found on high-tech dinghies.

The bearing system uses stainless steel balls in a captive grooved race and has a 113 kg (250 lb) maximum working load—the highest on the market compared to similarly sized blocks.

The 442 uses a spacer and the 404 uses an O-ring to keep the line in the sheave during intermittent loading.

The 467 and 484 use a narrow sheave for extremely small control lines and have a ferrule head for soft attachments. They use the same high load ball system. The 484 features a bronze sheave for added durability.


Use for:

Dinghy control lines Spinnaker pole trip lines

Big Boat leech lines
Downhauls
Cunninghams
Traveler controls
Unthauls
Cunninghams
Halyards on prams

Hardened stainless steel inner race for maximum strength-to-weight ratio.

Part		She		Lenç	jth	Wei	ight	Max £			mum ig load	Brea loa	king ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	lb	kg	lb	kg
368	In-line exit*	5/8	16	3	76	.94	27	7/32	5	250	113	1200	544
376	Forkhead	5/8	16	1 1/8	29	.38	11	7/32	5	250	113	1200	544
391	Hook-in halyard	5/8	16	1 5/8	41	.5	13	7/32	5	250	113	400	181
404	Single * *	5/8	16	1 1/8	29	.33	10	7/32	5	250	113	1200	544
405	Single/becket	5/8	16	1 1/2	38	.44	12	7/32	5	250	113	1200	544
406	Double	5/8	16	1 11/16	43	.94	27	7/32	5	450	204	1200	544
407	Double/becket	5/8	16	2 1/8	54	1	28	7/32	5	450	204	1200	544
408	Triple	5/8	16	1 13/16	46	1.44	41	7/32	5	700	318	1200	544
409	Triple/becket	5/8	16	2 1/4	57	1.5	43	7/32	5	700	318	1200	544
416	Cheek*	5/8	16	1 13/16	46	.44	12	7/32	5	250	113	1200	544
417	Single/swivel * * *	5/8	16	1 13/16	46	.63	18	7/32	5	250	113	750	339
421	Through-deck*	5/8	16	2 3/8	60	.63	18	7/32	5	250	113	1200	544
432	Pivot cheek*	5/8	16	1 3/8	35	.38	11	7/32	5	250	113	750	339
437	Flip-flop*	5/8	16	1 5/16	34	.75	21	7/32	5	250	113	1200	544
442	Block/eyestrap assembly*	5/8	16	1 3/8	35	.44	12	7/32	5	250	113	1200	544
467	Narrow ferrule head	5/8	16	1 15/32	37	.44	12	5/32	4	250	113	750	339

^{*4} mm (#8) RH fasteners. **Contact Harken for replacement O-rings HSB340. ***Shackle pin diameter 4 mm (5/32°).

Micro Blocks

Low-friction Micro blocks are compact and lightweight. They are ideal for sailboards, smaller dinghies, and lightly loaded control lines on boats of all sizes.

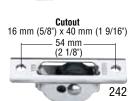
Micro block sheaves run exclusively on ball bearing systems for fast trim and release under any load. Delrin® ball bearings are UV-stabilized with carbon black for maximum protection. Stainless steel sideplates add strength.

Use for:

Cunninghams/outhauls Vangs Traveler controls Barberhaulers Flag halyards Leech cords Lead car return tackles

226

Actual Size


224

228

227

Micro fiddle with rounded V-Jam, or triples with cam make compact self-cleating tackles.

Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.

Sheaves see page 7	8.
--------------------	----

Part		She	ave J	Len	gth	Wei	ght	Shack	le pin		line Ø	Maxii workin	mum	Brea lo:	king
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
224	Single	7/8	22	1 1/2	38	.5	14			1/4	6	200	91	1200	544
225	Single/becket	7/8	22	2	51	.75	21			1/4	6	200	91	1200	544
226	Double	7/8	22	2	51	1.5	43			1/4	6	350	159	1200	544
227	Double/becket	7/8	22	2 1/2	64	1.5	43			1/4	6	350	159	1200	544
228	Triple	7/8	22	2	51	2	57			1/4	6	500	227	1200	544
229	Triple/becket	7/8	22	2 1/2	64	2.25	64			1/4	6	500	227	1200	544
230	Triple/471 Carbo-Cam	7/8	22	2	51	3.5	99			1/4	6	500	227	1200	544
231	Triple/471 Carbo-Cam/becket	7/8	22	2 1/2	64	3.5	99			1/4	6	500	227	1200	544
232	Traveler	7/8	22	2 3/4	71	1.25	35			1/4	6	200	91	1200	544
233	Cheek***	7/8	22	2 1/2	64	.75	21			1/4	6	200	91	1200	544
234	Single/shackle	7/8	22	2 1/4	57	.75	21	3/16	5	1/4	6	200	91	1200	544
235	Single/shackle/becket	7/8	22	2 3/4	71	1	28	3/16	5	1/4	6	200	91	1200	544
242	Through-deck***	7/8	22	2 5/8	67	1	28			1/4	6	200	91	1200	544
243	Upright***	7/8	22	1 1/2	38	1	28			1/4	6	200	91	1200	544
244	Fiddle/V-Jam*	7/8	22	3 1/2	89	2	57	3/16	5	1/4	6	350	159	1200	544
245	Fiddle/V-Jam/becket**	7/8	22	4	102	2	57	3/16	5	1/4	6	350	159	1200	544
292	Single/swivel	7/8	22	2 3/8	60	1	28	5/32	4	1/4	6	200	91	1200	544
377	Forkhead	7/8	22	1 21/32	42	.56	16			1/4	6	200	91	1200	544
443	Block/eyestrap assembly‡	7/8	22	1 3/4	45	.56	16			1/4	6	200	91	1000	454

*Use w/225 or 235. **Use w/226. ***#10 (5 mm) RH fasteners. ‡#8 (4 mm) RH fasteners.

CLASSIC BLOCKS

The timeless styling of our Classic block line enhances your boat's traditional look. Strong, dependable and exceptionally free-running, these compact blocks are the foundation of the Harken block line. We offer them in multiple configurations for dinghies, scows, beachcats, iceboats, and small offshore racers and cruisers.

Corrosion-resistant, maintain beauty and strength over time

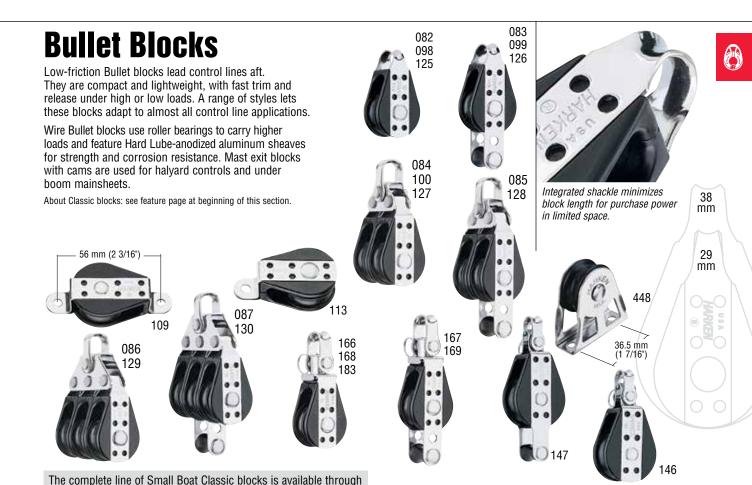
- · Ball bearings, sheave, and sideplates are UV-stabilized.
- · Corrosion-resistant stainless steel straps reinforce blocks.

Fast trim and release under load

• Free-running ball bearings roll on flat races with minimal friction.

MaterialsFor properties see pages 249-250.

Delrin® UV-stabilized: Ball bearings

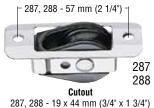


316 Stainless steel: Sideplate straps

Shackle blocks lock in two directions or swivel to keep line from twisting

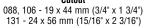
· Set screw allows shackle to be fixed or to swivel.

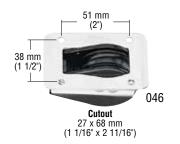
1			She		1	ath		inht	Shack			line		mum	Brea	
Single		Description						•	-					•		au kg
1	Bullet															Ť
084 Double 1 1/8 29 2 3/4 70 2.5 71 3/16 5 5/16 8 400 181 2000 085 Double/becket 1 1/8 29 3 1/2 89 2.75 78 3/16 5 5/16 8 400 181 2000 086 Triple/becket 1 1/8 29 3 3/4 95 4.5 128 3/16 5 5/16 8 400 181 2000 087 Triple/becket 1 1/8 29 3 3/4 95 4.5 128 3/16 5 5/16 8 600 272 2000 098 Wire single 1 1/8 29 2 3/4 70 1.25 35 5/16 8 500 227 2000 099 Wire single/becket 1 1/8 29 2 3/4 70 1.25 35 5/16 8 500 227 2000 100 Duble wire	082	Single	1 1/8	29	2	51	1	28			5/16	8	300	136	2000	907
085 Double/becket 1 1/8 29 3 1/2 89 2.75 78 3/16 5 5/16 8 400 181 2000 086 Triple 1 1/8 29 3 76 3.75 106 3/16 5 5/16 8 600 272 2000 087 Triple/becket 1 1/8 29 3 3/4 95 4.5 128 3/16 5 5/16 8 600 272 2000 098 Wire single/becket 1 1/8 29 2 3/4 70 1.25 35 5/16 8 500 227 2000 099 Wire single/becket 1 1/8 29 2 3/4 70 1.25 35 5/16 8 500 227 2000 100 Double wire 1 1/8 29 2 1/8 73 1.25 35 5/16 8 500 227 2000 110 Wire cheek* 1 1/8 29 <td>083</td> <td>Single/becket</td> <td>1 1/8</td> <td>29</td> <td>2 3/4</td> <td>70</td> <td>1.25</td> <td>35</td> <td></td> <td></td> <td>5/16</td> <td>8</td> <td>300</td> <td>136</td> <td>2000</td> <td>907</td>	083	Single/becket	1 1/8	29	2 3/4	70	1.25	35			5/16	8	300	136	2000	907
086 Triple 11/8 29 3 76 3.75 106 3/16 5 5/16 8 600 272 2000 087 Triple/becket 11/8 29 3 3/4 95 4.5 128 3/16 5 5/16 8 600 272 2000 098 Wire single/becket 1 1/8 29 2 51 1 28 5/16 8 500 227 2000 099 Wire single/becket 1 1/8 29 2 3/4 70 1.25 35 5/16 8 500 227 2000 100 Double wire 1 1/8 29 2 7/8 73 1.25 35 5/16 8 500 227 2000 109 Wire cheek* 1 1/8 29 2 1/18 29 1 28 5/16 8 500 227 2000 113 Pivoting cheek* 1 1/8 29 2 3/4 70	084	Double	1 1/8	29	2 3/4	70	2.5	71	3/16	5	5/16	8	400	181	2000	907
087 Triple/becket 1 1/8 29 3 3/4 95 4.5 128 3/16 5 5/16 8 600 272 2000 098 Wire single 1 1/8 29 2 51 1 28 5/16 8 500 227 2000 099 Wire single/becket 1 1/8 29 2 3/4 70 1.25 35 5/16 8 500 227 2000 100 Double wire 1 1/8 29 2 3/4 70 2.75 78 3/16 5 5/16 8 500 227 2000 100 Wire cheek* 1 1/8 29 2 7/8 73 1.25 35 5/16 8 500 227 2000 113 Pivoting cheek* 1 1/8 29 1 1/8 29 1 1/8 29 1 1/8 29 1 1/8 29 5/16 8 300 136 2000 166 Single/swivel/b	085	Double/becket	1 1/8	29	3 1/2	89	2.75	78	3/16	5	5/16	8	400	181	2000	907
098 Wire single 1 1/8 29 2 51 1 28 5/16 8 500 227 2000 099 Wire single/becket 1 1/8 29 2 3/4 70 1.25 35 5/16 8 500 227 2000 100 Double wire 1 1/8 29 2 3/4 70 2.75 78 3/16 5 5/16 8 500 227 2000 109 Wire cheek* 1 1/8 29 2 7/8 73 1.25 35 5/16 8 500 227 2000 113 Pivoting cheek* 1 1/8 29 1 1/8 29 1 1/8 29 1 1/8 29 1 1/8 29 1 1/8 300 136 2000 166 Single/swivel/becket 1 1/8 29 3 1/2 89 1.75 50 3/16 5 5/16 8 300 136 2000 183 Wire swivel <	086	Triple	1 1/8	29	3	76	3.75	106	3/16	5	5/16	8	600	272	2000	907
099 Wire single/becket 1 1/8 29 2 3/4 70 1.25 35 5/16 8 500 227 2000 100 Double wire 1 1/8 29 2 3/4 70 2.75 78 3/16 5 5/16 8 750 340 2000 109 Wire cheek* 1 1/8 29 2 7/8 73 1.25 35 5/16 8 500 227 2000 113 Pivoting cheek* 1 1/8 29 1 1/8 29 1 28 5/16 8 300 136 2000 166 Single/swivel 1 1/8 29 2 3/4 70 1.5 43 3/16 5 5/16 8 300 136 2000 167 Single/swivel/becket 1 1/8 29 3 1/2 89 1.75 50 3/16 5 5/16 8 300 136 2000 183 Wire swivel 1 1/8 <	087	Triple/becket	1 1/8	29	3 3/4	95	4.5	128	3/16	5	5/16	8	600	272	2000	907
100 Double wire 1 1/8 29 2 3/4 70 2.75 78 3/16 5 5/16 8 750 340 2000 109 Wire cheek* 1 1/8 29 2 7/8 73 1.25 35 5/16 8 500 227 2000 113 Pivoting cheek* 1 1/8 29 1 1/8 29 1 28 5/16 8 300 136 2000 166 Single/swivel/becket 1 1/8 29 2 3/4 70 1.5 43 3/16 5 5/16 8 300 136 2000 167 Single/swivel/becket 1 1/8 29 2 3/4 70 1.5 43 3/16 5 5/16 8 300 136 2000 183 Wire swivel 1 1/8 29 2 3/4 70 1.5 43 3/16 5 5/16 8 500 227 2000 183 Wire swive	098	Wire single	1 1/8	29	2	51	1	28			5/16	8	500	227	2000	907
109 Wire cheek*	099	Wire single/becket	1 1/8	29	2 3/4	70	1.25	35			5/16	8	500	227	2000	90
113 Pivoting cheek* 1 1/8 29 1 1/8 29 1 28 5/16 8 300 136 2000 166 Single/swivel 1 1/8 29 2 3/4 70 1.5 43 3/16 5 5/16 8 300 136 2000 167 Single/swivel/becket 1 1/8 29 2 3/4 70 1.5 43 3/16 5 5/16 8 300 136 2000 183 Wire swivel 1 1/8 29 2 3/4 70 1.5 43 3/16 5 5/16 8 300 136 2000 183 Wire swivel 1 1/8 29 2 3/4 70 1.5 43 3/16 5 5/16 8 300 136 2000 184 Bull 8 20 2.5 43 3/16 5 5/16 8 500 227 2000 126 Single/becket 1 1/2	100	Double wire	1 1/8	29	2 3/4	70	2.75	78	3/16	5	5/16	8	750	340	2000	90
166 Single/swivel 1 1/8 29 2 3/4 70 1.5 43 3/16 5 5/16 8 300 136 2000 167 Single/swivel/becket 1 1/8 29 3 1/2 89 1.75 50 3/16 5 5/16 8 300 136 2000 183 Wire swivel 1 1/8 29 2 3/4 70 1.5 43 3/16 5 5/16 8 500 227 2000 183 Wire swivel 1 1/8 29 2 3/4 70 1.5 43 3/16 5 5/16 8 500 227 2000 185 Build Build Build 20 2 3/4 70 1.5 43 3/16 5 5/16 8 500 227 2000 195 Single/becket 1 1/2 38 2 1/2 64 1.5 43 3/16 5 5/16 8 300 13	109	Wire cheek*	1 1/8	29	2 7/8	73	1.25	35			5/16	8	500	227	2000	90
167 Single/swivel/becket 1 1/8 29 3 1/2 89 1.75 50 3/16 5 5/16 8 300 136 2000 183 Wire swivel 1 1/8 29 2 3/4 70 1.5 43 3/16 5 5/16 8 500 227 2000 183 Wire swivel 1 1/8 29 2 3/4 70 1.5 43 3/16 5 5/16 8 500 227 2000 195 Single 1 1/2 38 2 1/2 64 1.5 43 3/8 10 300 136 2000 126 Single/becket 1 1/2 38 3 1/2 89 2 57 3/8 10 300 136 2000 127 Double 1 1/2 38 3 1/2 89 4.25 120 1/4 6 3/8 10 600 272 2000 128 Double/becket	113	Pivoting cheek*	1 1/8	29	1 1/8	29	1	28			5/16	8	300	136	2000	90
183 Wire swivel 1 1/8 29 2 3/4 70 1.5 43 3/16 5 5/16 8 500 227 2000 Isg Bullet 125 Single 1 1/2 38 2 1/2 64 1.5 43 3/8 10 300 136 2000 126 Single/becket 1 1/2 38 3 1/2 89 2 57 3/8 10 300 136 2000 127 Double 1 1/2 38 3 1/2 89 4.25 120 1/4 6 3/8 10 300 136 2000 127 Double/becket 1 1/2 38 3 1/2 89 4.25 120 1/4 6 3/8 10 600 272 2000 128 Double/becket 1 1/2 38 3 1/2 14 4.75 135 1/4 6 3/8 10 600 272 2000 129	166	Single/swivel	1 1/8	29	2 3/4	70	1.5	43	3/16	5	5/16	8	300	136	2000	90
Itig Bullet 125 Single 1 1/2 38 2 1/2 64 1.5 43 3/8 10 300 136 2000 126 Single/becket 1 1/2 38 3 1/2 89 2 57 3/8 10 300 136 2000 127 Double 1 1/2 38 3 1/2 89 4.25 120 1/4 6 3/8 10 600 272 2000 128 Double/becket 1 1/2 38 4 1/2 114 4.75 135 1/4 6 3/8 10 600 272 2000 129 Triple 1 1/2 38 3 3/4 95 6.5 184 1/4 6 3/8 10 600 272 2000 130 Triple/becket 1 1/2 38 4 3/4 121 6.75 191 1/4 6 3/8 10 750 340 2000 <t< td=""><td>167</td><td>Single/swivel/becket</td><td>1 1/8</td><td>29</td><td>3 1/2</td><td>89</td><td>1.75</td><td>50</td><td>3/16</td><td>5</td><td>5/16</td><td>8</td><td>300</td><td>136</td><td>2000</td><td>90</td></t<>	167	Single/swivel/becket	1 1/8	29	3 1/2	89	1.75	50	3/16	5	5/16	8	300	136	2000	90
125 Single 1 1/2 38 2 1/2 64 1.5 43 3/8 10 300 136 2000 126 Single/becket 1 1/2 38 3 1/2 89 2 57 3/8 10 300 136 2000 127 Double 1 1/2 38 3 1/2 89 4.25 120 1/4 6 3/8 10 600 272 2000 128 Double/becket 1 1/2 38 4 1/2 114 4.75 135 1/4 6 3/8 10 600 272 2000 129 Triple 1 1/2 38 3 3/4 95 6.5 184 1/4 6 3/8 10 600 272 2000 130 Triple/becket 1 1/2 38 4 3/4 121 6.75 191 1/4 6 3/8 10 750 340 2000 146 Single/shackle 1 1/2<	183	Wire swivel	1 1/8	29	2 3/4	70	1.5	43	3/16	5	5/16	8	500	227	2000	90
126 Single/becket 1 1/2 38 3 1/2 89 2 57 3/8 10 300 136 2000 127 Double 1 1/2 38 3 1/2 89 4.25 120 1/4 6 3/8 10 600 272 2000 128 Double/becket 1 1/2 38 4 1/2 114 4.75 135 1/4 6 3/8 10 600 272 2000 129 Triple 1 1/2 38 3 3/4 95 6.5 184 1/4 6 3/8 10 600 272 2000 130 Triple/becket 1 1/2 38 3 /4 95 6.5 184 1/4 6 3/8 10 750 340 2000 146 Single/shackle 1 1/2 38 3 1/8 79 2 57 3/16 5 3/8 10 300 136 2000 147	ig Bu	llet														
127 Double 1 1/2 38 3 1/2 89 4.25 120 1/4 6 3/8 10 600 272 2000 128 Double/becket 1 1/2 38 4 1/2 114 4.75 135 1/4 6 3/8 10 600 272 2000 129 Triple 1 1/2 38 3 3/4 95 6.5 184 1/4 6 3/8 10 750 340 2000 130 Triple/becket 1 1/2 38 4 3/4 121 6.75 191 1/4 6 3/8 10 750 340 2000 146 Single/shackle 1 1/2 38 3 1/8 79 2 57 3/16 5 3/8 10 300 136 2000 147 Single/shackle/becket 1 1/2 38 4 102 2.25 64 3/16 5 3/8 10 300 136 2000	125	Single	1 1/2	38	2 1/2	64	1.5	43			3/8	10	300	136	2000	90
128 Double/becket 1 1/2 38 4 1/2 114 4.75 135 1/4 6 3/8 10 600 272 2000 129 Triple 1 1/2 38 3 3/4 95 6.5 184 1/4 6 3/8 10 750 340 2000 130 Triple/becket 1 1/2 38 4 3/4 121 6.75 191 1/4 6 3/8 10 750 340 2000 146 Single/shackle 1 1/2 38 3 1/8 79 2 57 3/16 5 3/8 10 300 136 2000 147 Single/shackle/becket 1 1/2 38 4 102 2.25 64 3/16 5 3/8 10 300 136 2000 168 Single/swivel 1 1/2 38 3 1/4 83 2.25 64 3/16 5 3/8 10 300 136 <	126	Single/becket	1 1/2	38	3 1/2	89	2	57			3/8	10	300	136	2000	90
129 Triple 1 1/2 38 3 3/4 95 6.5 184 1/4 6 3/8 10 750 340 2000 130 Triple/becket 1 1/2 38 4 3/4 121 6.75 191 1/4 6 3/8 10 750 340 2000 146 Single/shackle 1 1/2 38 3 1/8 79 2 57 3/16 5 3/8 10 300 136 2000 147 Single/shackle/becket 1 1/2 38 4 102 2.25 64 3/16 5 3/8 10 300 136 2000 168 Single/swivel 1 1/2 38 3 1/4 83 2.25 64 3/16 5 3/8 10 300 136 2000	127	Double	1 1/2	38	3 1/2	89	4.25	120	1/4	6	3/8	10	600	272	2000	90
130 Triple/becket 1 1/2 38 4 3/4 121 6.75 191 1/4 6 3/8 10 750 340 2000 146 Single/shackle 1 1/2 38 3 1/8 79 2 57 3/16 5 3/8 10 300 136 2000 147 Single/shackle/becket 1 1/2 38 4 102 2.25 64 3/16 5 3/8 10 300 136 2000 168 Single/swivel 1 1/2 38 3 1/4 83 2.25 64 3/16 5 3/8 10 300 136 2000	128	Double/becket	1 1/2	38	4 1/2	114	4.75	135	1/4	6	3/8	10	600	272	2000	90
146 Single/shackle 1 1/2 38 3 1/8 79 2 57 3/16 5 3/8 10 300 136 2000 147 Single/shackle/becket 1 1/2 38 4 102 2.25 64 3/16 5 3/8 10 300 136 2000 168 Single/swivel 1 1/2 38 3 1/4 83 2.25 64 3/16 5 3/8 10 300 136 2000	129	Triple	1 1/2	38	3 3/4	95	6.5	184	1/4	6	3/8	10	750	340	2000	90
147 Single/shackle/becket 1 1/2 38 4 102 2.25 64 3/16 5 3/8 10 300 136 2000 168 Single/swivel 1 1/2 38 3 1/4 83 2.25 64 3/16 5 3/8 10 300 136 2000	130	Triple/becket	1 1/2	38	4 3/4	121	6.75	191	1/4	6	3/8	10	750	340	2000	90
168 Single/swivel 1 1/2 38 3 1/4 83 2.25 64 3/16 5 3/8 10 300 136 2000	146	Single/shackle	1 1/2	38	3 1/8	79	2	57	3/16	5	3/8	10	300	136	2000	90
	147	Single/shackle/becket	1 1/2	38	4	102	2.25	64	3/16	5	3/8	10	300	136	2000	90
169 Single/swivel/becket 1 1/2 38 4 102 2.5 71 3/16 5 3/8 10 300 136 2000	168	Single/swivel	1 1/2	38	3 1/4	83	2.25	64	3/16	5	3/8	10	300	136	2000	90
	169	Single/swivel/becket	1 1/2	38	4	102	2.5	71	3/16	5	3/8	10	300	136	2000	90
	448	Halyard lead block	1 1/2	38	2	51	2.1	60			3/8	10	300	136	600	_2


*Tornillos RH de 5 mm (#10).

Bullet, Dinghy & Exit Blocks

About Classic blocks: see feature page at beginning of this section.





089 - 21 x 67 mm (13/16" x 2 5/8") 134 - 24 x 94 mm (15/16" x 3 11/16")

The complete line of Small Boat Classic blocks is available through Harken dealers worldwide and online at www.harken.com/classic

Part		She Ø		Len	gth	We	ight	Max			mum ig load	Brea loa	king ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	lb	kg	lb	kg
Bullet													
088	Through-deck*	1 1/8	29	3	76	1.25	35	5/16	8	300	136	2000	907
089	In-line exit*	1 1/8	29	3 3/4	95	1.75	50	5/16	8	400	181	2000	907
096	Upright**	1 1/8	29	1 1/2	38	1.5	43	5/16	8	300	136	2000	907
106	Wire through-deck*	1 1/8	29	3	76	1.25	35	5/16	8	500	227	2000	907
108	Wire upright**	1 1/8	29	1 1/2	38	1.5	43	5/16	8	500	227	2000	907
197	Exit/150 Cam-Matic (port/stbd)**	1 1/8	29	3	76	4.5	128	5/16	8	300	136	2000	907
220	Double upright**	1 1/8	29	1 1/2	38	2.25	64	5/16	8	400	181	2000	907
287	Through-deck**	1 1/8	29	3	76	1.25	35	5/16	8	300	136	2000	907
288	Wire through-deck**	1 1/8	29	3	76	1.5	43	5/16	8	400	181	2000	907
289	In-line exit**	1 1/8	29	3 3/4	95	2.12	60	5/16	8	400	181	2000	907
Big Bu	llet												
131	Through-deck*	1 1/2	38	3 1/2	89	2.25	64	3/8	10	300	136	2000	907
134	In-line exit*	1 1/2	38	5	127	3.25	92	3/8	10	600	272	2000	907
222	Upright**	1 1/2	38	2 1/4	57	2.5	71	3/8	10	300	136	2000	907
223	Double upright**	1 1/2	38	2 1/4	57	3.25	92	3/8	10	600	272	2000	907
Dinghy													
046	Through-deck‡	1 3/4	44	3	76	4	113	3/8	10	350	159	2000	907

^{*5} mm (#10) FH fasteners. **5 mm (#10) RH fasteners. ‡4 mm (#8) RH fasteners. Contact Harken for other Dinghy 44 mm (1 3/4") blocks.

2.25" Blocks

About Classic blocks: see feature page at beginning of this section.

The complete line of Small Boat Classic blocks is available through Harken dealers worldwide and online at www.harken.com/classic.

Part		She Ø	ave J	Len	gth	We	ight	Shack Ø	le pin J	Max Ø	x ·	Maxi workin			iking ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
001	Single	2 1/4	57	4 1/4	108	4.5	128	3/16	5	7/16	12	500	227	2500	1134
047	Through-deck*	2 1/4	57	3 1/2	89	5.5	156			7/16	12	500	227	2500	1134
206	Upright lead * *	2 1/4	57	3 1/4	83	5.5	156			7/16	12	500	227	2500	1134

^{*#8 (4} mm) RH fasteners. **#10 (5 mm) RH fasteners.

Hexa-Cat Bases

Combine the 193 and 170 Hexa-Cat bases with Big Bullet or 2.25" (57 mm) blocks for purchases from 5:1 to 8:1.

About Classic blocks: see feature page at beginning of this section.

	Hexa-(Cat max	cimun	ı worki	ng loa	ıds					
		5:	1	6:	1	7:	1	8:	1		
	Base	lb	kg	lb	kg	lb	kg	lb	kg		
Little Hexa-Cats	193	1100	499	1100	499	1250	567	1250	567		
Hexa-Cats	170	1500 680 1500 680 1500 680 1500 680									

The complete line of Small Boat
Classic blocks is available through
Harken dealers worldwide and online
at www.harken.com/classic.

Simple block on boom Simple block on boom													
5	:1	6	:1	7	:1	8:1							
	Hexa-Cat		Hexa-Cat		Hexa-Cat								
128	004/2603/	129	048/2604	130	2605	2654							
	2663		or 2664		or 2665								
		Boom block	ks (multiple block	(s on boom)									
126/125	001/002 or	125/127	001/003 or	126/127	002/003 or	2 x 127							
	2601/2600		2602/2600		2603/2600								
	2660/2661		2662/2660		2663/2660								
127	003	128	004	129	048	130							
				100	477								
193	170	193	170 🔻	193 🖤	170 ■	193							

Part	Part		Sheave Ø		Length		Weight		Shackle pin Ø		Max line Ø		iking ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg
170	Hexa-Cat/150 Cam-Matic	3	76	7 1/4	184	16.5	468	1/4	6	7/16	12	3000	1361
193	Little Hexa-Cat/150 Cam-Matic	2 1/4	57	5 3/4	146	12	340	1/4	6	3/8	10	2500	1134

Dinghy Vang

The dinghy vang features 16 mm sheaves with stainless ball bearings for high loads. The assembly includes a 468 Micro Cam-Matic® cleat that allows precise trimming. It's easy to cleat because it pivots for a fair lead. The unit connects to a mast bracket with a 1/4" pin. The system provides a 12:1 purchase when cascaded with 4:1 blocks. The vang lower unit is available by itself or as part of a kit, which includes a 16 mm double block cascaded to a Micro single with becket for the vang purchase, plus a Micro single for attaching the cunningham.

Part		We	Weight		Max sail area		Maximum working load		king ad
No.	Description	0Z	g	ft²	m²	lb	kg	lb	kg
431	Dinghy vang kit	10.3	291	125	11.6	400	181	1000	454
HSB534	Dinghy vang lower unit*	8.1	229	125	11.6	400	181	1000	454

^{*}Order your own line, 406, and 225 blocks to complete system.

HSB534

Two-Speed Mainsheet Systems


Harken gross-trim/fine-tune mainsheet systems are easy to install and use. These optimized systems decrease overall line clutter because they use less line than traditional gross-trim/fine-tune systems. For fast trimming, pull both tails of the mainsheet. To fine-tune or to trim using a higher purchase, pull a single tail.

Two-speed mainsheet systems come in three configurations for boats from 6.5 m to 11.8 m (22 - 39'), with mains as large as 32.4 m² (350 ft²).

Systems

			Lin	e Ø			Max mair	nsail area		
Part		M	in	M	Max		boom	Mid-boom		
No.	Description	in	mm	in	mm	ft²	m²	ft²	m²	
332	3:1/6:1 self-contained system*	5/16	8	3/8	10	240	22.3	180	16.9	
383	4:1/8:1 self-contained system*	5/16	8	3/8	10	350	32.4	275	25.5	

^{*}Line not included.

Components

			Sh	eave Ø					
Part		Prin	nary	Secondary		Length		Weight	
No.	Description	in	mm	in	mm	in	mm	0Z	g
385	Double fiddle	3	76	1 3/4	44	7 3/4	197	21	595
386	Double fiddle/ratchet/cross block/412 Cam-Matic	3	76	2 1/4, 1 3/4	57, 44	11 1/2	292	37	1049
400	Double/cross block	3	76	2 1/4	57	9 1/2	241	22	625
401	Double fiddle/ratchet/412 Cam-Matic	3	76	1 3/4	44	7 1/4	184	31	885

Ordering Midrange Blocks

1. Determine block size and type

The tables below are guidelines for typical applications. Additional rigging tips are available at http://www.harken.com.

2. Contact

If you have questions, please contact your dealer or Harken Technical Service.

Note: Multihulls and heavy displacement monohulls should reduce the maximum sail areas shown by as much as 25%.

Mainsheet

The farther forward a mainsheet system is on the boom, the higher the loads. Systems with multiple attachment points spread the load over the boom. Use the table to determine if Midrange blocks are strong enough for your mainsail area. See pages 258 - 260 for common configurations.

Mainsheet

		Maximum mainsail are	ea (P x E x .5 x 1.1*)
		ft²	m²
End-boom system	Single attachment	500	46
	Multiple attachment†	540	50
Mid-boom system	Single attachment	425	39
	Multiple attachment†	500	46

^{*}Assumes 10% roach. †Assumes two or more shackles share load on both boom and deck.

Genoa Footblocks

Determine the area of your foretriangle and how many degrees the footblock will deflect the line to select footblock size. For system loading details, see the Block Loading vs. Angle of Deflection and Genoa System **Loading** sections on page 275. See page 255 for common configurations.

Spinnaker: Symmetrical/Asymmetrical

Use the spinnaker's sail area to determine what size Midrange or high-load Midrange blocks to use for the sheet and afterguy controls. See page 265 for common configurations.

Genoa Footblocks

	Maximum 100% foretriangle sail area at 35 knots (I x J x .5)							
	ft²	m²						
180° turn	150	14						
90° turn	215	20						

Spinnaker

			spinnaker a dard	area (P x E x High-							
		ft²	m²	ft²	m²						
Sheet	Plain	1100	100	1300	120						
	Ratchet	900	83	_	_						
Afterguy*	Mounted amidships	1100	100	1250	115						
	Mounted on transom	900	83	1000	93						
		Maximum "I" dimension									
Masthead halyard		48	14.6	53	16						

^{*}Assumes maximum deflection of 45°.

Mastbase Lead Blocks

Attach blocks to padeves or 1634 Midrange ESP stand-up bases, or mount mastbase halvard leads to the deck. Use mainsail luff length and foretriangle height to determine what size Midrange or high-load Midrange blocks to use. Carbo blocks or 1986 mastbase halvard leads may be appropriate for applications with lower loads. See page 264 for common configurations.

Mastbase Lead Blocks

	Sta	ndard	High-load								
	ft	m	ft	m							
		Maximum "P	" dimension								
Main halyard lead	48	14.6	52	15.8							
		Maximum "I" dimension									
Genoa halyard lead	46	14	50	15.3							
Spinnaker halyard lead	48	14 6	53	16							

Running Backstays

The table below shows if Midrange or highload Midrange blocks are strong enough for the backstay, based on the breaking strength of the runner wire.

Running Backstays

	IM	aximum breaking	load of runner wir	e			
	Stan	dard	High-load				
2:1 flying blocks	lb	kg	lb	kg			
1:1 afterguy deck	2200	998	2800	1270			
2:1 afterguy becket deck	3600	1633	3600	1633			
2:1 afterguy single deck	4500	2040	5000	2268			

Vang

See page 261 for common configurations.

Vana

valig		
	Maximum mainsail ai	rea (P x E x .5 x 1.1*)
	ft²	m²
Fiddle	400	37
Triple	450	42

^{*}Assumes 10% roach.

Midrange Blocks

About Classic blocks: see feature page at beginning of this section.

Hexaratchet blocks

Midrange Hexaratchet blocks grip loaded sheets, yet allow sailors to ease and trim quickly and with complete control. A switch on the side engages and disengages the ratchet mechanism.

Eight-sided aluminum sheave for 10:1 or 15:1 holding power with 180° wrap.

Torlon is a registered trademark of Solvay Advanced Polymers L.L.C.

Part			eave Ø	Len	igth	We	ight	_	le pin J	Max	line J	Maxi workin			aking ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
Standa	rd														
1540	Single	3	76	6 1/8	156	13	367	5/16	8	9/16	14	1800	816	5000	2268
1541	Single/becket	3	76	7 1/8	184	14	397	5/16	8	9/16	14	1800	816	5000	2268
1542	Single/aluminum sheave	3	76	6 1/8	156	15	425	5/16	8	9/16	14	1800	816	5000	2268
1544	Double	3	76	7 1/2	191	25.5	723	5/16	8	9/16	14	2800	1270	7000	3175
1545	Double/becket	3	76	8 1/2	216	26.5	751	5/16	8	9/16	14	2800	1270	7000	3175
1546	Triple	3	76	7 3/4	197	36	1020	5/16	8	9/16	14	3800	1724	8500	3856
1548	Cheek*	3	76	4 3/8	111	11	312			9/16	14	1500	680	4200	190
1559	Fiddle	3;2	76;51	8 1/2	216	17	482	5/16	8	9/16	14	1800	816	5000	2268
1560	Fiddle/becket	3;2	76;51	9 1/2	241	18	510	5/16	8	9/16	14	1800	816	5000	2268
1564	Fiddle/280 Cam-Matic/becket	3;2	76;51	9 1/2	241	24.5	695	5/16	8	9/16	14	1800	816	5000	2268
1586	Single/high-load * *	3	76	6 1/8	156	13	367	5/16	8	9/16	14	2300	1043	5000	2268
Hexara	itchet														
1549	Single/clockwise	3	76	6 1/8	156	14	397	5/16	8	9/16	14	1800	816	5000	2268
1550	Single/becket/clockwise	3	76	7 1/8	184	15	425	5/16	8	9/16	14	1800	816	5000	2268
1555	Triple/280 Cam-Matic/clockwise	3	76	7 3/4	197	49	1389	5/16	8	9/16	14	3800	1724	8500	3856
1556	Triple/280 Cam-Matic/becket/clockwise	3	76	8 3/4	222	51	1446	5/16	8	9/16	14	3800	1724	8500	3856
1571	Single/counterclockwise	3	76	6 1/8	156	14	397	5/16	8	9/16	14	1800	816	5000	2268
1565	Fiddle/280 Cam-Matic/clockwise	3;2	76;51	8 1/2	216	26.5	751	5/16	8	9/16	14	1800	816	5000	2268
1566	Fiddle/280 Cam-Matic/becket/clockwise	3;2	76;51	9 1/2	241	27.5	780	5/16	8	9/16	14	1800	816	5000	2268

Line/Wire High Strength Blocks

Lightweight, low-friction wire blocks carry wire halyards and high-strength control lines on boats of all sizes.

High-load composite bearings carry axial loads. Hard Lube-anodized sheave for strength and corrosion resistance.

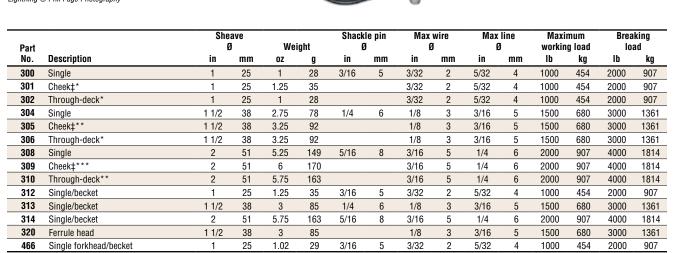
25 mm (1") wire blocks use low-friction thrust washers. 38 mm (1.5") and 51 mm (2") wire blocks feature sideload balls between the sheave and the sideplate to minimize friction from unfair leads.

466 features a forkhead and becket making it useful for vangs, halyards and control lines.

Use for:

Wire halyards Vangs Control lines

High-load composite bearings handle wire and high-strength line.



Sideplates rotate to insert preswaged/ Nico-pressed wire fittings.

313

314

‡Fasteners included. *#10 (5 mm) RH fasteners. ** 6 mm (1/4") RH fasteners. *** 8 mm (5/16") RH fasteners.

Ordering Big Boat Blocks

1. Determine block size and type

The tables below are a guideline for typical applications. Additional rigging tips are available at http://www.harken.com.

2. Contact

If you have any questions, please contact your dealer or Harken Technical Service.

Note: These hardware specifications assume a boat of moderate displacement sailing in normal conditions. Ultralight displacement boats (ULDB) may use smaller hardware. Heavy displacement boats and multihulls often require stronger hardware.

Mainsheet

Mainsheets are usually attached near the end or the middle of the boom, depending on accessibility and whether the boat is used for racing or cruising. The farther forward a mainsheet system is on the boom, the higher the loads it sees. Systems with multiple attachment points spread the load over the boom. Use the table to choose the appropriate Black Magic, Element, or stainless steel blocks for your mainsail area. See pages 258-260 for common configurations.

		Maximum mainsail area (P x E x .5 x 1.1**)														
	45 mm Element* 57 mm low-load Black Magic		60 mm Element* 57 mm high-load Black Magic		75 mm low-load Black Magic/ 75 mm ESP		80 mm Element* 75 mm high-load Black Magic/ 75 mm stainless		100 mm Black Magic/ 100 mm stainless		125 mm Black Magic		150 Black N 150 stain	Vlagic/ mm		
	ft²	m²	ft²	m²	ft²	m²	ft²	m²	ft²	m²	ft²	m²	ft²	m²		
End-boom																
Single attachment	450	41	550	51	600	56	750	70	900	84	1250	116	1550	144		
Multiple attachment**‡	500	46	675	63	720	67	900	84	1100	102	1500	139	1750	163		
Mid-boom																
Single attachment	400	37	400	37	450	42	550	51	700	65	1000	93	1375	128		
Multiple attachment**	450	41	575	53	600	56	700	65	950	88	1300	121	1525	142		

^{*}Element blocks are appropriate for most cruising boats. For high-performance boats, choose Black Magic blocks.

Running Backstays

Crews use running backstays to adjust mast bend for different wind conditions. This controls headsail sag as well as the camber (depth) of the mainsail. Use Black Magic Air Runner blocks with higher breaking strengths than your runner wire.

				Maxim	um breaking	load of runn	er wire				
	Black	mm Magic unner	75 i Black Air Ri	Magic		mm Magic unner	125 Black Air Ri		150 mm Black Magic Air Runner		
	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	
Flying	2500	1134	10000	4535	15000	6800	22000	10000	30000	13605	
2:1 Separate deck	3025	1372	12100	5490	17550	7960	26500	12020	36136	16388	
2:1 Becket deck	1875	850	7500	3400	10900	4945	16500	7485	22500	10204	
3:1 Deck (block #1)	3713	1684	14850	6735	21600	9800	32700	14835	44550	20203	
3:1 Deck (block #2)	4525	2052	18100	8210	26300	11930	39850	18075	54300	24625	

Mastbase Lead Blocks

Leading halyards and control lines aft allows crews to raise and lower sails or make tuning adjustments from the cockpit. Attach blocks to the mast collar post or padeyes, or mount mastbase halyard leads to the deck. The table below sizes Black Magic, Element, ESP, stainless steel, and mastbase blocks for different foretriangle heights and luff lengths. See page 264 for common configurations.

	57 mm	Element* low-load agic/ESP	60 mm Element* 57 mm high-load Black Magic/ fixed MBL** blocks		Black Mast colla	low-load Magic/ Ir post block/ Im ESP	75 mm h Black Ma MBL**	Element* nigh-load agic/fixed blocks/ stainless	Black	mm Magic/ stainless	125 mm Black Magic		
	ft	m	ft	m	ft	m	ft	m	ft	m	ft	m	
				Maximum "P" Dimension									
Main halyard	47	14.3	52	15.8	60	18.3	74	22.6	80	25	90	27.5	
					Maxin	num "I" Dim	ension						
Genoa halyard	45	13.7	50	50 15.2 53 16.1		17.7	72	21.9	76	23.2	87	26.5	
Spinnaker halyard	47	14.3	53			18.3	74	22.6	82	25	93	28.4	

^{*}Element blocks are appropriate for most cruising boats. For high-performance boats, choose Black Magic blocks. **MBL = Mastbase lead blocks.

^{**}Assumes 10% roach. ‡Assumes two or more shackles share load on both boom and deck.

Ordering Big Boat Blocks

Tattler II, 19.2 m (63'), Gaff-rigged Sandbagger, Van Dam Custom Boats @ Alison Langley

Spinnaker: Symmetrical/Asymmetrical

Use the spinnaker's sail area to determine what size Black Magic, Element, or stainless steel blocks to use for the sheet and afterguy controls. See pages 269-270 for common configurations.

					N	laximum	spinnakei	r area (l :	x J x 1.8)					
	57 mm	45 mm Element* 57 mm low-load Black Magic		lement* igh-load Magic	80 mm Element* 75 mm low-load Black Magic/ 75 mm ESP		75 mm high-load Black Magic/ 75 mm stainless		100 mm Black Magic/ 100 mm stainless		125 mm Black Magic		150 Black I 150 mm s	Magic/
	ft²	m²	ft²	m²	ft²	m²	ft²	m²	ft²	m²	ft²	m²	ft²	m²
Spinnaker sheet, tack line	720	67	1200	111	1400	130	2000	186	2650	246	4300	400	5600	520
Afterguy**	790	73	1320	123	1500	140	2200	204	2900	269	4700	437	6100	567

^{*}Element blocks are appropriate for most cruising boats. For high-performance boats, choose Black Magic blocks. **Assumes maximum deflection of 45° to winch.

Genoa Footblocks

Footblocks route genoa controls from the lead car to a winch. Double footblocks or snatch blocks enable faster sheet changes. Determine the area of your foretriangle and how many degrees the footblock will deflect the line to select footblock size. For system loading details, refer to the **Block Loading vs Angle of Deflection** and **Genoa System Loading** sections on page 279. See page 259 for common configurations.

Single Genoa Footblocks

		Maximum 100% foretriangle sail area at 40 knots (I x J x .5)														
	45 mm E 57 i Carga m Black	nm oderada	60 mm Element* 57 mm Carga moderada Black Magic		80 mm Element* 75 mm Black Magic/ 75 mm inoxidable		100 mm Black Magic/ 100 mm inoxidable		125 mm Black Magic		150 Black I 150 mm ir	Magic/				
	ft²	m²	ft²	m²	ft²	m²	ft²	m²	ft²	m²	ft²	m²				
180° turn	110	10	180	17	365	34	540	50	800	74	1100	102				
120° turn	125	12	210	20	420	39	630	59	920	85	1256	117				
90° turn	155	14	260	24	515	48	770	72	1130	105	1540	143				

^{*}Element blocks are appropriate for most cruising boats. For high-performance boats, choose Black Magic blocks.

Double Genna Footblocks

Double delied i dotbi	UUNS										
			Maxin	num 100% 1	oretriangle sa	ail area at 40	knots* (I x .	J x .5)			
		low-load Magic		lement** igh-load Magic	80 mm E 75 mm Bl:	lement** ack Magic	100 Black	mm Magic	125 mm Black Magic		
	ft²	m²	ft²	m²	ft²	m²	ft²	m²	ft²	m²	
180° turn	75	7	120	11	240	22	360	33	530	49	
120° turn	85	8	140	13	275	26	415	39	610	57	
90° turn	105	10	175	16	340	32	510	47	750	70	

^{*}Based on load on upper sheave. **Element blocks are appropriate for most cruising boats. For high-performance boats, choose Black Magic blocks.

ELEMENT BLOCKS

When Harken sets out to create a block for sailors who have always believed they didn't need Harken, what happens? The new Element block. The name hints at its essence: everything that doesn't contribute durability or strength is stripped away. The result is an economical block that does a Harken job.

Element blocks introduce sideplates that combine forged aluminum and compound curves for strength. They are simultaneously contemporary and very robust. Element's design pairs the minimum amount of metal required to protect the sheave with a proven journal bearing. So size for size, Element is priced significantly lower, than our previously least expensive blocks. Compare them to plain bearing blocks from competitors, you'll be surprised. Element: Harken design and engineering—value-price.

Element blocks accept line from 8 - 16 mm. They are offered in singles, doubles, triples, fiddles, and footblocks in 45, 60 and 80 mm sizes.

Stands up to sun, salt, and impact

- Aluminum sideplates are forged for strength and sheave protection.
- Sideplates are hardcoat-anodized to resist corrosion.
- Bearing sheave of tough composite resists corrosion for a long service life.
- Shackles are strong, corrosion-resistant stainless steel.

MaterialsFor properties see pages 249-250.

6061-T6 aluminum: Hardcoat-anodized sideplates

Shackle blocks lock in two directions or swivel to keep line from twisting

 Removable headpost lock allows shackle to be fixed or to swivel.

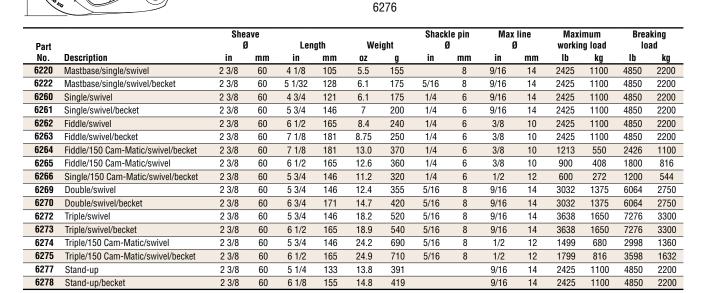
45 mm Blocks

About Element blocks: see feature page at beginning of this section.

Part		Sheave Ø		Length		We	ight		kle pin Ø	Max line Ø		Maximum working load		Breaking load	
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
6230	Single/swivel	1 3/4	45	4	102	3.6	103	1/4	6	1/2	12	1543	700	3086	1400
6231	Single/swivel/becket	1 3/4	45	4 3/4	121	4.0	115	1/4	6	1/2	12	1543	700	3086	1400
6232	Fiddle/swivel	1 3/4	45	5 1/8	130	4.4	126	1/4	6	5/16	8	1543	700	3086	1400
6233	Fiddle/swivel/becket	1 3/4	45	5 3/4	146	4.6	130	1/4	6	5/16	8	1543	700	3086	1400
6234	Fiddle/150 Cam-Matic/swivel/becket	1 3/4	45	5 3/4	146	8.6	245	1/4	6	5/16	8	1213	550	2426	1100
6235	Fiddle/150 Cam-Matic/swivel	1 3/4	45	5 1/8	130	8.4	241	1/4	6	5/16	8	900	408	1800	816
6236	Single/150 Cam-Matic/swivel/becket	1 3/4	45	4 3/4	121	8.1	230	1/4	6	1/2	12	600	272	1200	544
6238	Double/swivel	1 3/4	45	4 1/4	108	6.3	180	1/4	6	1/2	12	1929	875	3858	1750
6239	Double/swivel/becket	1 3/4	45	5	127	6.8	195	1/4	6	1/2	12	1929	875	3858	1750
6240	Triple/swivel	1 3/4	45	4 1/4	108	9.3	265	1/4	6	1/2	12	2315	1050	4630	2100
6241	Triple/swivel/becket	1 3/4	45	5	127	9.6	275	1/4	6	1/2	12	2315	1050	4630	2100
6242	Triple/150 Cam-Matic/swivel	1 3/4	45	4 1/4	108	14.7	420	1/4	6	1/2	12	1499	680	2998	1360
6243	Triple/150 Cam-Matic/swivel/becket	1 3/4	45	5	127	15.1	430	1/4	6	1/2	12	1799	816	3598	1632
6250	Stand-up	1 3/4	45	4 7/8	123	5.3	150			1/2	12	1543	700	3086	1400
6251	Stand-up/becket	1 3/4	45	5 5/8	143	5.8	164			1/2	12	1543	700	3086	1400

Footblock Dimensions

Part	P	١	E	3	(;	D		
No.	in	mm	in	mm	in	mm	in	mm	
6237	7/16	11	1 5/8	41.5	1 3/4	45	3/8	9.5	


Footblock

Part		She Ø	ave i	Le	ngth	He	ight	We	ight	Max	line Ø	Maxi workin		Brea lo:	•	Fasteners (FH)
No.	Description	in	mm	in	mm	in	mm	OZ	g	in	mm	lb	kg	lb	kg	mm
6237	Single footblock	1 3/4	45	3	76	1	25	3.5	100	1/2	12	1543	700	3086	1400	6

About Element blocks: see feature page at beginning of this section.

6267

6268

Footblock Dimensions

Part		A	Е	}		;)
No.	in	mm	in	mm	in	mm	in	mm
6267/6268/6271/6276	1/2	12.5	2 5/32	54 5	2 3/8	60	9/16	14

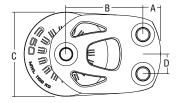
6271

6278

Footblocks

		She	ave							Max	line	Maxi			king	Fasteners
Part		k	3	Lei	ngth	Hei	gnt	we	ight	k	3	workir	ıg load	10	ad	(FH)
No.	Description	in	mm	in	mm	in	mm	0Z	g	in	mm	lb	kg	lb	kg	mm
6267	Single footblock	2 3/8	60	4	102	1 3/16	30	5.6	160	9/16	14	2425	1100	4850	2200	8
6268	Single footblock/lockoff	2 3/8	60	4	102	1 3/16	30	7.4	210	9/16	14	2425	1100	4850	2200	8
6271	Double footblock	2 3/8	60	4	102	2 3/16	55	9.3	265	9/16	14	1600	725	3200	1450	8
6276	Single footblock/lockoff/left	2 3/8	60	4	102	1 3/16	30	7.4	210	9/16	14	2425	1100	4850	2200	8

About Element blocks: see feature page at beginning of this section.



Removable headpost lock allows shackle to be fixed or to swivel.

Part		She £		Len	gth	We	ight		de pin Ø		line Ø		mum ig load	Brea lo:	iking ad
No.	Description	in	mm	in	mm	OZ	g	in	mm	in	mm	lb	kg	lb	kg
6221	Mastbase/single/swivel	3 1/8	80	5 1/2	138	12.6	358		10	5/8	16	4850	2200	9700	4400
6280	Stand-up	3 1/8	80	6 9/16	166	23.6	670			5/8	16	4850	2200	9700	4400
6290	Single/swivel	3 1/8	80	6 3/4	171	16.6	475	3/8	10	5/8	16	4850	2200	9700	4400
6291	Single/swivel/becket	3 1/8	80	8	203	18.9	540	3/8	10	5/8	16	4850	2200	9700	4400
6292	Fiddle/swivel	3 1/8	80	9	229	21.4	610	3/8	10	9/16	14	4850	2200	9700	4400
6293	Fiddle/swivel/becket	3 1/8	80	10	254	22.4	640	3/8	10	9/16	14	4850	2200	9700	4400
6296	Double/swivel	3 1/8	80	7 1/2	191	32.0	915	1/2	12	5/8	16	6064	2750	12128	5500
6297	Double/swivel/becket	3 1/8	80	8 3/4	222	34.3	980	1/2	12	5/8	16	6064	2750	12128	5500

Footblock Dimensions

Part		4	В		·	,	L	,
No.	in	mm	in	mm	in	mm	in	mm
6294/6295/6298/6299	3/4	19.5	2 13/32	61	3 1/8	80	25/32	19.8

Footb	locks			62	94/629	5/6298/6	299	3/4	19.5	2 13/	32	61 3	3 1/8	80	25/32	19.8
Part		She		Len	gth	Hei	ght	We	ight	Max	line Ø	Maxi workir			iking ad	Fasteners (FH)
No.	Description	in	mm	in	mm	in	mm	0Z	g	in	mm	lb	kg	lb	kg	mm
6294	Single footblock	3 1/8	80	4 1/2	114	1 7/16	36	10.9	310	5/8	16	4850	2200	9700	4400	10
6295	Single footblock/lockoff	3 1/8	80	4 1/2	114	1 7/16	36	14.4	410	5/8	16	4850	2200	9700	4400	10
6298	Double footblock	3 1/8	80	4 1/2	114	2 9/16	65	20.3	580	5/8	16	3197	1450	6394	2900	10
6299	Single footblock/lockoff/left	3 1/8	80	4 1/2	114	1 7/16	36	14.4	410	5/8	16	4850	2200	9700	4400	10

FlatWinder Powered Block

The Harken FlatWinder powered block is a self-contained, low-profile powered system developed for mainsheet traveler adjustment. This powerful block is easy to use and offers sailors huge benefits in mainsail control, giving them the means to quickly depower the rig, and delay reefing when the wind picks up. Like a compact captive winch for the traveler, the FlatWinder is completely self-contained. It operates in both directions allowing the car to move anywhere on the track while also keeping the traveler line off the cockpit floor. FlatWinders can be also used for other applications, like stern platform lifting or foil trimming. Contact Harken Tech Service for more details.

The Flatwinder is available with an electric or hydraulic motor. The compact horizontal motor is housed neatly belowdeck and has a maximum working load of 250/500 kg (550/1100 lb). When used with 10 mm line and a 4:1 purchase, this translates into around 1000 kg (2205 lb) of pull with the FlatWinder 250; 2000 kg (4410 lb) with the FlatWinder 500. The FlatWinder 250 fits monohulls 15 - 18 m (50 - 60') and catamarans 14 - 15 m (45 - 50'); the FlatWinder 500 fits monohulls 18 - 24 m (60 - 80') and catamarans 15 - 20 m (50 - 70').

The FlatWinder is available in 12V, 24V, or 48V electric or hydraulic depending on the boat's system. A Harken Dual-Function Control Box is included with the electric FlatWinders. This integrated load controller and control box conserves space, and with half as many wires as separate systems, is easier to install. Switches and circuit breakers are not included.

Electric B C Line entry height (LE)

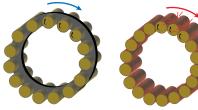
FW250EA12H FW250EA24H FW250EA48H FW250HA FW500EA12H FW500EA24H FW500EA48H FW500HA

Part		Wei	ght	Line heigh		Lin	e Ø	Faste circ		Fasteners (SH or HH)	Maxi workin	mum g load		speed load)
No.	Description	lb	kg	in	mm	in	mm	in	mm	mm	lb	kg	ft/min	m/min
FW250EA12H	FlatWinder powered block/12-volt	27.5	12.5	1 1/8	29	3/8	10	4 15/16	125	6 x M6	550	250	115	35
FW250EA24H	FlatWinder powered block/24-volt	27.5	12.5	1 1/8	29	3/8	10	4 15/16	125	6 x M6	550	250	115	35
FW250HA	FlatWinder powered block/hydraulic	24.2	11	1 1/8	29	3/8	10	4 15/16	125	6 x M6	550	250	63	19.2
FW500EA12H	FlatWinder powered block/12-volt	49.6	22.5	1 1/8	29	3/8	10	6 5/16	160	6 x M6	1100	500	85	26
FW500EA24H	FlatWinder powered block/24-volt	49.6	22.5	1 1/8	29	3/8	10	6 5/16	160	6 x M6	1100	500	105	32
FW500HA	FlatWinder powered block/hydraulic	38.5	17.5	1 1/8	29	3/8	10	6 5/16	160	6 x M6	1100	500	41	12.5
FW250EA48H	FlatWinder/48-volt	28.2	12.8	1 1/8	29	3/8	10	4 15/16	125	6 x M6	550	250	72	22
FW500EA48H	FlatWinder/48-volt	53.57	24.3	1 1/8	29	3/8	10	6 5/16	160	6 x M6	1100	500	47	14.3

Dimensions

Part	A		В		C	;	D		E		F		G	ı	Н	
No.	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
FW250EA12H	7 9/16	192	8 7/8	226	5 1/8	130	2	51	1 3/4	43	6 1/8	155	8 15/16	227	12 11/16	322
FW250EA24H	7 9/16	192	8 7/8	226	5 1/8	130	2	51	1 3/4	43	6 1/8	155	8 15/16	227	12 11/16	322
FW250HA	7 9/16	192	8 7/8	226	5 1/8	130	2	51	1 13/16	46.5	5 31/32	151.5	8 23/32	221	12 15/32	316.7
FW500EA12H	9 1/2	242	10 3/4	273	6	152	2 1/16	53	2 13/16	71	9 1/8	231	14 5/16	363	19 1/16	484
FW500EA24H	9 1/2	242	10 3/4	273	6	152	2 1/16	53	2 13/16	71	9 1/8	231	14 5/16	363	19 1/16	484
FW500HA	9 1/2	242	10 3/4	273	6	152	2 1/16	53	2 13/16	71	9 1/8	231	11 3/8	289.3	16 5/32	410.2
FW250EA48H	7 9/16	192	8 7/8	226	5 1/8	130	2	51	1 1/2	39	6 1/4	159	9 1/2	241	13 1/4	337
FW500EA48H	9 1/2	242	10 3/4	273	6	152	2 1/16	53	2 13/16	71	9 1/8	231	13 7/8	351	18 1/2	472

BLACK MAGIC AIR BLOCKS


Black Magic Air blocks are a top favorite of Big Boat performance racers and cruisers. These lightweight, free-running, powerful performers are used for sail controls that see lots of action: mainsheet, runner, halyard, and spinnaker systems. Offered in 57 - 150 mm sizes, with low-load versions in 57 and 75 mm ranges.

High-strength, lightweight

- · Aluminum sheaves and sideplates.
- CNC sculpted for optimal strength-to-weight.

Stands up to sun, salt, and time

- Sideplates and sheaves Hard Lube-anodized for maximum UV protection and a smooth surface.
- Dissimilar metals isolated to prevent corrosion.

Caged vs. Uncaged Rollers

Low-friction efficiency for fast trim and release

- Center cage keeps Torlon® roller bearings separated and parallel to reduce friction.
- Captive Delrin® ball bearings carry side loads.

Shackle blocks lock in two directions or swivel to keep line from twisting

· Set screw allows shackle to be fixed or to swivel.

Soft-attach options

- · Loop or lash through sheave center instead of block head.
- Sheave center carries primary load, allowing a smaller, lighter weight block.

Soft-attach options

Easy maintenance

· Patented Loop blocks have a removable dead end post for attachment to a padeye.

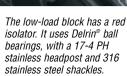
6061-T6 aluminum: Hard Lube-anodized sideplates, sheave

Delrin **UV-stabilized:** Ball bearings

Caged roller bearings

Materials For properties see pages 249-250.

About Black Magic Air blocks: see feature pages at beginning of this section.


Torlon is a registered trademark of Solvay Advanced Polymers, L.L.C.

Part		She Ø		Lenç	gth	We	ight		de pin Ø	Max (line Ø	Maxi workin			aking ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
3214	Single loop**	2 1/4	57	3	76	3.23	92			7/16	12	2500	1134	5000	2268
3215	Single/swivel	2 1/4	57	4 11/16	119	5.36	152	1/4	6	7/16	12	2500	1134	5000	2268
3216	Single/swivel/becket	2 1/4	57	5 1/2	140	5.86	166	1/4	6	7/16	12	2500	1134	5000	2268
3217	Double/swivel	2 1/4	57	5 3/16	132	11.86	336	5/16	8	7/16	12	3600	1633	7200	3267
3218	Double/swivel/becket	2 1/4	57	6	152	12.43	352	5/16	8	7/16	12	3600	1633	7200	3267
3219	Triple/swivel	2 1/4	57	5 3/16	132	13.34	378	5/16	8	7/16	12	4850	2200	9700	4400
3226	Single/swivel/low-load	2 1/4	57	4 11/16	119	5.44	154	1/4	6	7/16	12	1655	750	3300	1500
3227	Stand-up*	2 1/4	57	4 1/2	114	7.04	200	1/4	6	7/16	12	2500	1134	5000	2268
3228	Double/swivel/low-load	2 1/4	57	5 3/16	132	12.05	342	5/16	8	7/16	12	2755	1250	5510	2500
3229	Single/swivel/low-load/becket	2 1/4	57	5 1/2	140	5.95	169	1/4	6	7/16	12	1655	750	3300	1500
3386	Double loop**	2 1/4	57	3	76	5.93	168			7/16	12	2500	1134	5000	2268
3387	Single loop/wide sheave**	2 1/4	63	3 1/2	88	6.4	181.3			7/16	12	2500	1134	5000	2268

^{*}Includes padeye. 6 mm (1/4") fastener circle: 37 mm (1 15/32"). **Loop not included. See page 81.

About Black Magic Air blocks: see feature pages at beginning of this section.

3388

Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.

3232

3231

3243

Jeirin is a	i registerea trademark of E. I. du Poi	nt de ivemours a	na Con	npany or its	атинате	S.									
		Shea	ive					Shack	le pin	Max	line	Maxi		Brea	
Part		Ø		Lenç	gth	Wei	ght	Ç	3	J	ð	workin	g load	loa	ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
3230	Single loop*	2 15/16	75	3 15/16	100	7.36	209			9/16	14	5000	2268	10000	4536
3231	Single/swivel	2 15/16	75	5 1/8	129	11.68	331	5/16	8	9/16	14	5000	2268	10000	4536
3232	Single/swivel/becket	2 15/16	75	6 3/16	157	12.8	363	5/16	8	9/16	14	5000	2268	10000	4536
3233	Double/swivel	2 15/16	75	5 1/4	134	25.44	721	3/8	10	9/16	14	7500	3402	15000	6804
3241	Spriddle/swivel	2 15/16	75	7 13/16	199	17.76	503	5/16	8	9/16	14	5000	2268	10000	4536
3242	Spriddle/swivel/becket	2 15/16	75	8 7/8	225	18.96	538	5/16	8	9/16	14	5000	2268	10000	4536
3243	Single/swivel/low-load	2 15/16	75	5 1/8	129	11.82	335	5/16	8	9/16	14	3000	1361	6000	2722
3244	Stand-up**	2 15/16	75	5 15/16	151	15.6	442			9/16	14	5000	2268	10000	4536
3388	Single loop/wide sheave*	3 1/4	82	4 17/32	116	12.2	346			9/16	2x 14	5000	2268	10000	4536

^{*}Loop not included. See page 81. **Includes padeye. Uses hole spacing and base dimensions of 627 padeye. Maximum working load decreases at varying angles, refer to page 85.

About Black Magic Air blocks: see feature pages at beginning of this section.

Deadend post for attachment to a closed bail. Loop not included, see page 85.

59 mm (2 5/16")

Anka⁴, Solaris 64 RS, 19.5 m (64'), naval architect: Javier Soto Acebal © Solaris Yachts

Part		Shea Ø	ive	Len	gth	Wei	ight	Shack	de pin Ø		line Ø	Maxi workin		Brea loa	
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
3211	Standup/becket**	3 15/16	100	9 1/4	235	32.49	921			5/8	16	7500	3402	15000	6804
3245	Single loop*	3 15/16	100	5 1/16	128	13.09	371			5/8	16	7500	3402	15000	6804
3246	Single/swivel	3 15/16	100	8	203	21.98	623	3/8	10	5/8	16	7500	3402	15000	6804
3247	Single/swivel/becket	3 15/16	100	9 1/2	241	23.82	675	3/8	10	5/8	16	7500	3402	15000	6804
3248	Double/swivel	3 15/16	100	8 15/16	227	45.28	1284	1/2	12	5/8	16	11000	4990	22000	9979
3254	Stand-up**	3 15/16	100	7 11/16	195	31.18	884			5/8	16	7500	3402	15000	6804

^{*}Loop not included. See page 81. **Includes padeye. Uses hole spacing and base dimensions of 648 padeye, refer to page 85.

125 mm & 150 mm Blocks

About Black Magic Air blocks: see feature pages at beginning of this section.

The center becket provides block with additional stiffness for deadending purchases.

Stand-Up Blocks

Part	A		В	}	(;
No.	in	mm	in	mm	in	mm
3261	3 21/32	93	4 3/16	106	2 1/4	57
3266	3 3/4	95	5 3/16	132	3 5/8	92

Part		Shea Ø		Len	gth	Wei	ight		kle pin Ø		line Ø	Maxi workin			king ad
No.	Description	in	mm	in	mm	OZ	g	in	mm	in	mm	lb	kg	lb	kg
125 m	m														
3255	Single loop*	4 15/16	125	6	163	23.78	674			3/4	19	11000	4990	22000	9979
3256	Single/swivel	4 15/16	125	10	254	37.31	1058	1/2	12	3/4	19	11000	4990	22000	9979
3261	Stand-up**	4 15/16	125	9 1/16	230	44.72	1268			3/4	19	11000	4990	22000	9979
3267	Center becket			2 3/8	60	4.8	136					3667	1663		
150 m	m														
3262	Single/swivel	5 15/16	150	12	305	64.9	1840	5/8	16	1	25	15000	6804	30000	13608
3266	Stand-up ‡	5 15/16	150	11 1/8	283	85.34	2419			1	25	15000	6804	30000	13608

3262

^{*}Loop not included. See page 81. **Includes padeye. Uses hole spacing and base dimensions of 648 padeye. Maximum working load decreases at varying angles, refer to page 85.
‡ Uses hole spacing and base dimensions of 629 padeye. Maximum working load decreases at varying angles, refer to page 85.

Air Runner Blocks

Runners are used on running backstays of offshore boats to adjust mast bend for different wind conditions.

Integrated sideplate bails and recessed cotter key help produce a smooth design that won't snag lifelines.

Foam padded Block Socks easily install over Air Runner blocks to protect your blocks, deck, and crew.

About Black Magic Air blocks: see feature pages at beginning of this section.

Sideload bearing strips dampen rig vibration.

Block Socks

Block Socks	
Part No.	Fits
3035	3224/3238/3239
3036	3251/3252
3037	3259/3260
3038	3264/3265

Runner Blocks

Part		Shea Ø	ive	Lenç	jth	We	ight	Clev	is pin Ø	Max	line Ø	Maxi workin			king ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
57 mm	l														
3224	Single	2 1/4	57	3 3/8	86	4.42	125	3/8	10	1/2	12	2500	1134	5000	2268
75 mm															
3238	Single	2 15/16	75	4 5/8	118	10.16	288	1/2	12.7	9/16	14	5000	2268	10000	4536
3239	Single/becket	2 15/16	75	5 3/4	146	11.2	318	1/2	12.7	9/16	14	5000	2268	10000	4536
100 mi	m														
3251	Single	3 15/16	100	6 3/16	157	17	481	5/8	15.9	5/8	16	7500	3402	15000	6804
3252	Single/becket	3 15/16	100	7 9/16	193	19.12	542	5/8	15.9	5/8	16	7500	3402	15000	6804
125 mi	m														
3259	Single	4 15/16	125	7 11/16	195	29.76	844	3/4	19	3/4	19	11000	4990	22000	9979
3260	Single/becket	4 15/16	125	9 1/2	240	33.52	950	3/4	19	3/4	19	11000	4990	22000	9979
150 mi	n														
3264	Single	5 15/16	150	8 3/4	221	50.64	1436	3/4	19	1	25	15000	6804	30000	13608
3265	Single/becket	5 15/16	150	10 13/16	275	56.72	1608	3/4	19	1	25	15000	6804	30000	13608

Crossover Blocks

Crossover blocks provide a cleaner, more efficient deck. These easy-to-install blocks mount behind the stopper bank on each side of the cabin house and can route any line to the winch on the opposite side. Blocks feature built-in risers and sculpted backing plates. The large, strong bases protect cored decks. Use the 1984 for boats to 11.5 m (38') and the 1981 for boats to 15 m (48').

Part		She Ø	ave i	Ba:	se J	Hei	ght	We	ight	Max	line)	Maxi workin			iking ad
No.	Description	in	mm	in	mm	in	mm	OZ	g	in	mm	lb	kg	lb	kg
1981	Crossover	2 3/16	56	2 5/8	66	1 7/16	36	8	227	7/16	12	3000	1361	6000	2722
1984	Crossover	1 3/4	44	2 1/16	52	1 1/4	32	4.2	119	3/8	10	2000	907	4000	1814

Teardrop Blocks

Teardrop blocks are ideal as masthead leads and in other applications where limited articulation or direct attachment is desired. When attached to a compatible padeye, teardrop blocks will not hit the deck when lines are slack, but allow enough movement to ensure fairleads when jumping halyards. They are often used on permanent backstays of fractionally rigged boats where the backstay can be spliced directly to the head of the block.

3223 3240 3253

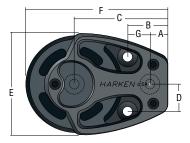
About Black Magic Air blocks: see feature pages at beginning of this section.

Part		Shea Ø	ve	Len	gth	We	ight		s pin Ø	Max	line Ø	Maxi workin		Brea loa		Use
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg	padeye
57 mm	1															
3223	Padeye/high-load	2 1/4	57	3 3/8	86	3.92	111	5/16	8	3/8	10	2500	1134	5000	2268	627
75 mm	1															
3240	Padeye	2 15/16	75	4 7/16	113	8.72	247	3/8	10	9/16	14	5000	2268	10000	4536	648/689
100 m	m															
3253	Padeye	3 15/16	100	5 13/16	148	16	454	1/2	12.7	5/8	16	7500	3402	15000	6804	

Footblocks

Use footblocks to redirect lines on the deck. Footblocks with lockoffs temporarily secure sheets.

Either metric or imperial flathead fasteners may be used for mounting and are not exposed.


About Black Magic Air blocks: see feature pages at beginning of this section.

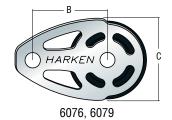
Dimensions

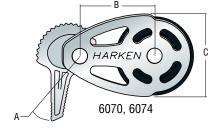
Part	P	١	В	}	C				E		F		G	ì
No.	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
3220/3221/3222	3/8	9.5	7/8	22.5	2 1/32	51.5	5/8	16	2 5/16	59	3 5/16	84	1/2	13
3234/3235/3236/3237	15/32	11.5	1 1/8	28.5	2 3/4	70.5	13/16	21	3	77	4 5/16	110	21/32	17
3249/3250	9/16	14.5	1 15/32	37.5	3 21/32	92.5	1 3/32	28	3 15/16	100	5 5/8	143	29/32	23
3257/3258	21/32	17	1 25/32	45	4 7/16	113	1 11/32	34.5	5 1/32	127.5	6 29/32	176	1 3/32	28
3263	13/16	20.5	2 3/32	53.5	5 3/32	129	1 5/8	41	6 1/16	154	8 1/32	204	1 5/16	33

Part		Shea Ø	ve	Len	gth	Heiç	jht	Wei	ght	Max	line Ø	Maxi workin		Brea loa	•	Faste (F	
No.	Description	in	mm	in	mm	in	mm	0Z	g	in	mm	<u>lb</u>	kg	lb	kg	pul	mm
57 mn	1																
3220	Single/high-load	2 1/4	57	3 5/16	84	1	25	4.29	122	7/16	12	2500	1134	5000	2268	4 x 1/4	4 x 6
3222	Double/high-load	2 1/4	57	3 5/16	84	1 13/16	46	7.6	215	7/16	12	1655	750	3310	1500	4 x 1/4	4 x 6
75 mn	n																
3234	Single	2 15/16	75	4 3/8	111	1 1/4	32	9.76	277	9/16	14	5250	2380	10500	4762	4 x 5/16	4 x 8
3235	Double	2 15/16	75	4 3/8	111	2 1/4	57	17.28	490	9/16	14	3465	1572	6930	3143	4 x 5/16	4 x 8
3236	Single/lockoff*	2 15/16	75	4 3/8	111	1 1/4	32	11.28	320	9/16	14	5250	2380	10500	4762	4 x 5/16	4 x 8
3237	Double/lockoff*	2 15/16	75	4 3/8	111	2 1/4	57	20.24	574	9/16	14	3465	1572	6930	3143	4 x 5/16	4 x 8
100 m	m																
3249	Single	3 15/16	100	5 5/8	143	1 5/16	33	19.57	555	5/8	16	7500	3402	15000	6804	4 x 3/8	4 x 10
3250	Double	3 15/16	100	5 5/8	143	2 7/16	62	34.1	967	5/8	16	4950	2250	9900	4500	4 x 3/8	4 x 10
125 m	m																
3257	Single	4 15/16	125	6 15/16	176	1 11/16	43	34.29	972	3/4	19	11000	4990	22000	9979	4 x 1/2	4 x 12
3258	Double	4 15/16	125	6 15/16	176	2 13/16	71.5	60.35	1711	3/4	19	7260	3292	14520	6585	4 x 1/2	4 x 12
150 m	m																
3263	Single	5 15/16	150	8 1/16	205	1 7/8	48	58.58	1661	1	25	15000	6804	30000	13608	4 x 5/8	4 x 16

^{*}Lockoffs are intended to hold lines temporarily and should not be used in place of line stoppers or clutches.

Stainless Steel Cruising ESP Blocks





Dimensions

Part	A		В		C	
No.	in	mm	in	mm	in	mm
6070	1 31/32	50	2 5/32	55	2 1/4	57
6074	2	51	2 1/2	63	2 29/32	74
6076			2 5/32	55	2 1/4	57
6079			2 1/2	63	2 31/32	75

(6069, 6073)

Post not included

Part		Shea Ø	ve	Len	gth	Wei	ght		shackle n Ø		line Ø	Maxi workin		Brea loa	king ıd‡	Max I		Faste (F	
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg	lb	kg	in	mm
57 m	m																		
6068	Single/swivel	2 1/4	57	5 1/2	140	11	312	5/16	8	5/8	16	2205	1000	4409	2000				
6069	Teardrop mast collar	2 1/4	57	3 11/16	93.5	7	198	5/16	8	5/8	16	2205	1000	4409	2000				
6070	Single foot/lockoff*‡	2 1/4	57	3 3/4	132	9	255			5/8	16	2205	1000	4409	2000	650	295	3/8	10
6076	Footblock‡	2 1/4	57	3 3/4	95	7	198			5/8	16	2205	1000	4409	2000			3/8	10
6089	Single/swivel/becket	2 1/4	57	6 11/16	170	12.5	354	5/16	8	5/8	16	2205	1000	4409	2000				
75 m	m																		
6072	Single/swivel	3	75	6 1/4	159	19	539	5/16	8	3/4	19	3500	1587	7000	3175				
6073	Teardrop mast collar	3	75	4 5/8	117	16	454	5/16	8	3/4	19	3000	1361	6000	2722				
6074	Single foot/lockoff*‡	3	75	4 3/8	111	17	482			3/4	19	3500	1587	7000	3175	750	340	3/8	10
6079	Footblock‡	3	75	4 1/2	114	16	454			3/4	19	3500	1587	7000	3175			3/8	10
6080	Fiddle	3;1 13/16	75;46	8 3/8	213	24	680	5/16	8	3/4	19	3500	1587	7000	3175				
6081	Fiddle/becket	3;1 13/16	75;46	9 1/2	241	26.25	744	5/16	8	3/4	19	3500	1587	7000	3175				
6087	Single/swivel/becket	3	75	7 1/4	184	21.25	602	5/16	8	3/4	19	3500	1587	7000	3175				
Deck	Organizers																		
6075	Stainless steel 3-sheave ‡	1 9/16	40	7 11/16	179	10	284			1/2	12	3000	1361	6000	2722			5/16	8
6071	Stainless steel 3-sheave ‡	2 1/4	57	9 15/16	252	21	595			5/8	16	6000	2722	12000	5442			3/8	10

Lockoffs are intended to hold lines temporarily and should not be used in place of line stoppers or clutches.

Megayacht Blocks

Harken Megayacht blocks have an ultralight composite bearing system (ULC) that rides on a heat-treated stainless steel inner race to handle extremely high loads. Snap-fit Torlon® ball bearings carry thrust loads. Sideplates are mirror-polished stainless steel to reflect the traditional beauty of a classic yacht, or hardcoat-anodized 6061-T6 aluminum for strength and corrosion resistance perfect for performance yachts.

Torlon is a registered trademark of Solvay Advanced Polymers L.L.C.

C14457 C14040 C14196 C13771

Use the hollow inner race as a becket attachment for weight reduction.

HC8670 HC8657 HC8639 HC8635

HC9077 HC9082 HC9087 HC9092 HC8667 HC8640 HC8633 HC8631

HC9078 HC9083 HC9088 HC9093

C14584

C14696

C13911 C14207

C12236 C12242 C12237 C12243 C12238 C12239

100, 125, 150 & 175 MM

Stainless Steel Part No.	Aluminum Part No.	Description	Specifications	Imperial	Metric
75 mm					
HC9985		Swivel block	a. a		
HC9986		Stand-up block	Sheave Ø:	2 15/16"	75 mm
HC9987		Swivel block/becket	Max line Ø:	9/16"	14 mm
HC9990		Teardrop	Maximum working load:		2268 kg
HC10041		Single footblock	Breaking load:	10000 lb	4536 kg
100 mm					
HC9076	HC8673	Stand-up block	Sheave Ø:	3 15/16"	100 mm
HC9077	HC8670	Swivel block	Max line Ø:	3 15/16 5/8"	16 mm
HC9078	HC8667	Teardrop		5/8 11025 lb	5000 kg
C14584	C14457	Single footblock/compact	Maximum working load: Breaking load:	22050 lb	•
C12242	C12236	Stud mastbase block	breaking ivau.	22000 10	10000 kg
125 mm					
HC9081	HC8674	Stand-up block	Sheave Ø:	4 15/16"	125 mm
HC9082	HC8657	Swivel block	Max line Ø:	3/4"	19 mm
HC9083	HC8640	Teardrop	Maximum working load:	-, .	7000 kg
C14696	C14040	Single footblock/compact	Breaking load:	30870 lb	14000 kg
C12243	C12237	Stud mastbase block	Dicaking load.	3007010	14000 kg
150 mm					
HC9086	HC8675	Stand-up block	Sheave Ø:	5 15/16"	150 mm
HC9087	HC8639	Swivel block*	Max line Ø:	1"	25 mm
HC9088	HC8633	Teardrop	Maximum working load:	-	10000 kg
C13911	C14196	Single footblock/compact	Breaking load:	44100 lb	20000 kg
C12244	C12238	Stud mastbase block	Dicaking Ivau.	4410010	20000 kg
175 mm					
HC9091	HC8932	Stand-up block	Sheave Ø:	6 7/8"	175 mm
HC9092	HC8635	Swivel block**	Max line Ø:	1"	25 mm
HC9093	HC8631	Teardrop	Maximum working load:	•	15000 kg
C14207	C13771	Single footblock/compact	Breaking load:	66150 lb	30000 kg
C12245	C12239	Stud mastbase block	Dicaking load.	0010010	30000 kg

^{*}Maximum working load limited by shackle: 8800 kg; 19405 lb. **Maximum working load limited by shackle: 12800 kg; 28225 lb. Contact Harken East for custom sizes.

Mastbase Halyard Lead Blocks

Fixed Mastbase Leads

Low-profile mastbase halyard lead blocks are lightweight and can be grouped in a small area at the mastbase. Flared cheeks prevent chafe on the halyards.

The high-load bearing system has a PTFE composite bushing and sideload balls. The sheave is hardcoat-anodized aluminum for additional strength.

Teardrop Mast Collar Blocks

These teardrop mast collar blocks coordinate well with any Harken blocks in a deck layout. Sheaves feature sleeve bearings to handle high static loads and are ideal for halyards. Use the blocks for direct attachment to padeyes, mast collar posts, perforated mast collars, or in mastbase situations where leads might change.

1986

448

Saga, Saare 38.2, 11.4 m (38'), naval architect: Karl-Johan Strahlmann © Saare Yachts OÜ

6107

6065 6057

6050 6056 6095

6096 6097 6098

TEARDROP MAST COLLAR BLOCKS

Part		Shea Ø	ive	Wid	th	Len	gth	Hei	ght	Wei	ght	Max Ø		Maxi workin			king ad	Fasteners
No.	Description	in	mm	in	mm	in	mm	in	mm	0Z	g	in	mm	lb	kg	lb	kg	required
Fixed H	alyard Leads																	
448	Halyard lead block	1 1/2	38	7/8	22	2	51	2 1/8	53	2.1	60	3/8	10	300	136	600	272	2
1986	Halyard lead*	1 3/4	44	7/8	22	2 7/8	73	2 1/4	57	3.36	95	3/8	10	750	340	1500	680	2
1988	Mastbase/fixed**	2 1/4	57	1 3/8	35	3 3/16	81	2 7/8	73	6.2	175	3/8	10	2500	1136	5000	2273	3
1990	Mastbase/fixed * * *	3	76	1 1/4	32	3 13/16	97	3 3/4	95	11.5	326	1/2	12	5000	2273	10000	4545	4
3123	Mastbase/fixed‡	4	102	1 5/8	41	5 1/8	130	5 1/8	130	24.9	708	11/16	18	11000	4990	22000	9980	2
3192	Mastbase/fixed	4	102	1 15/16	50	6 13/16	173	5 1/8	130	35.25	1000	5/8	16	13227	6000	26455	12000	3
Teardro	p Mast Collar Blocks																	
6050	Teardrop mast collar	2 1/4	57			3 11/16	93.5			4.3	122	5/8	16	2100	850	4190	1900	
6056	Teardrop mast collar	2 15/16	75			4 5/8	117			7.8	221	3/4	19	3000	1361	6000	2721	
6057	Teardrop padeye block	2 15/16	75			4 11/16	119			8.4	238	3/4	19	3500	1587	7000	3175	
6065	Teardrop padeye block	2 1/4	57			3 11/16	93.5			4.5	128	5/8	16	2100	850	4190	1900	
6095	Teardrop mast collar/low-load	2 1/4	57			3 1/2	89			4	113	5/8	16	1650	748	3300	1497	
6096	Narrow teardrop mast collar	2 1/4	57	2 5/16	59	3 1/2	89			3.3	94	3/8	10	1650	748	3300	1497	
6097	Narrow teardrop mast collar	2 1/4	57	2 5/16	59	3 1/2	89			3.5	99	3/8	10	1650	748	3300	1497	
6098	Narrow teardrop mast collar	3	75	3 1/32	77	4 7/16	113			6.4	181	1/2	12	2500	1134	5000	2268	
6107	Teardrop mast collar	1 9/16	40			2 19/32	65.5			2.2	64	1/2	12	1250	567	2500	1134	

Over-the-Top Blocks

Over-the-top blocks lead lines aft over cabin houses, coamings, and splashguards. They feature high-load sheaves and come in single, double, and triple configurations.

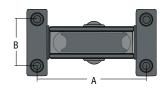
Part		She:		Wid	lth	Len	gth	Hei	ght	We	ight	Max	line)	Maxi workin	mum ig load	Brea loa		Fasteners
No.	Description	in	mm	in	mm	in	mm	in	mm	0Z	g	in	mm	lb	kg	lb	kg	required
3002	Single over-the-top*	2 1/4	57	1 3/8	35	3 1/4	83	3 1/4	83	6.4	181	3/8	10	2500	1136	5000	2272	2
3003	Double over-the-top*	2 1/4	57	2 7/16	62	3 1/4	83	3 1/4	83	12.2	346	3/8	10	2500	1136	5000	2272	4
3004	Triple over-the-top*	2 1/4	57	3 1/2	89	3 1/4	83	3 1/4	83	18.1	513	3/8	10	2500	1136	5000	2272	6
C8322	Single over-the-top**	1 3/4	45	1 7/16	36	3 1/16	78	3 7/32	82	5.6	159	1/2	12	2500	1136	5000	2272	2
C8624	Single over-the-top**	2 15/16	75	1 11/16	43	4	101	4	101	18.5	526	9/16	14	5000	2272	10000	4536	3

^{*6} mm (1/4") FH. **Contact Harken to request quote and lead time.

Flip-Flop Blocks

Low-profile Flip-Flop blocks are lightweight and can be used for various leads on your boat including halyard, mainsheet, and spinnaker sheet leads.

The Flip-Flop block has aluminum hardcoat-anodized sideplates and features Hard Lube-anodized aluminum sheaves for strength and corrosion resistance.


High-load Flip-Flop blocks pivot around the line axis to keep line close to the deck. Hinged construction allows variable leads. Lockoff provides a temporary stop to free up winches.

Bénéteau Oceanis 46.1 © Guido Cantini / Bénéteau

Dimensions

Part	Fastene	rs (SH)	A		В	
No.	in	mm	in	mm	in	mm
1987/1989	5/16	8	4 15/16	125	1 15/16	50
3122/3194	1/4	6	3 11/16	93.6	1 9/16	39.7
SH cap screw fa	steners.					

Part		She		Wid	dth	Len	gth	Hei	ght	Wei	ght	Max	line Ø	Maxi workin	mum ig load	Brea loa	
No.	Description	in	mm	in	mm	in	mm	in	mm	0Z	g	in	mm	lb	kg	lb	kg
1987	Flip-Flop	3	76	2 7/8	72	6	152	4	100	17.37	493	1/2	12	5000	2273	10000	4545
1989	Flip-Flop/lockoff	3	76	2 7/8	72	6	152	4	100	21.1	598	1/2	12	5000	2273	10000	4545
3122	Flip-Flop	2 1/4	57	2 1/4	57	4 3/8	111	2 7/8	73	9	255	3/8	10	2500	1136	5000	2273

V Blocks

Loop or lash through sheave center instead of block head. Sheave carries primary load, allowing a smaller,

lighter weight block.

The V block delivers another breakthrough in Harken's loop block series for Grand-Prix racers. Harken engineers have simplified the mechanics by combining the axial and thrust bearings into a single bearing set of V-shaped titanium rollers. The result is a strong, lightweight block that offers unmatched efficiency at high loads, while spinning freely at low loads for smooth easing in light air.

Harken V blocks feature titanium sheaves and captive titanium roller bearings, and are available with either 3D-molded carbon or anodized aluminum sideplates. V blocks are easy to disassemble for inspection and maintenance.

V blocks are named for the unique V-shaped angled rollers that handle both axial and thrust loads.

V Blocks

Wide sheave accepts multiple lines for sail changes or a single, high-load larger line that requires a small deflection.

© Bill Faude

3294AL 3297AL 3295AL 3296AL 3363AL

3370AL C14730 3371AL C14951 3372AL C15203

3362AL 3366AL 3367AL 3368AL 3369AL

ALUMINUM

ALUMINUM WIDE SHEAVE

		She		_				Max I	ine		mum		king
Part		. 0		Len	•		ight	Ø		workin	•		ad
No.	Description	in	mm	in	mm	OZ_	g	in	mm	lb	kg	lb	kg
1.5T													
3294	1.5T single loop — Carbon	1 7/8	47	2 19/32	66	2.86	81	11/32	9	3300	1500	6600	3000
3294AL		1 7/8	47	2 9/16	65	3.35	95	11/32	9	3300	1500	6600	3000
3366AL	1.5T single loop/wide sheave — Aluminum	1 7/8	47	2 11/16	68	4.27	121	2 x 5/16	2 x 8	3300	1500	6600	3000
3T													
3295	3.0T single loop — Carbon	2 3/16	56	3	77	3.99	113	7/16	11	6600	3000	13200	6000
3295AL	3.0T single loop — Aluminum	2 3/16	56	3	77	4.37	124	7/16	11	6600	3000	13200	6000
3367AL	3.0T single loop/wide sheave — Aluminum	2 3/16	56	3	77	6.24	177	2 x 3/8	2 x 10	6600	3000	13200	6000
5T													
3296	5.0T single loop — Carbon	2 7/16	62	3 5/16	84	6.31	179	1/2	13	11000	5000	22000	10000
3296AL	5.0T single loop — Aluminum	2 7/16	62	3 5/16	84	6.74	191	1/2	13	11000	5000	22000	10000
3362AL	5.0T single loop/wide sheave — Aluminum	2 7/16	62	3 3/4	94	9.17	260	2 x 1/2	2 x 13	11000	5000	22000	10000
6.5T													
3297	6.5T single loop — Carbon	3 1/4	82	4 3/16	107	12.84	364	5/8	16	14300	6500	28600	13000
3297AL	6.5T single loop — Aluminum	3 1/4	82	4 3/16	107	14.11	400	5/8	16	14300	6500	28600	13000
3368AL	6.5T single loop/wide sheave — Aluminum	3 1/4	82	4 5/8	118	18.13	514	2 x 5/8	2 x 16	14300	6500	28600	13000
8T													
3363AL	8.0T single loop — Aluminum	4 3/32	104	5 3/8	136	25.12	712	11/16	18	17600	8000	35200	16000
3369AL	8.0T single loop/wide sheave — Aluminum	4 3/32	104	5 9/16	141	31.57	895	2 x 11/16	2 x 18	17600	8000	35200	16000
12T													
3370AL	12T single loop — Aluminum	4 3/4	120	6 3/16	157	33.23	942	7/8	22	26400	12000	52800	24000
C14730	12T single loop/wide — Aluminum	4 3/4	120	6 19/32	168	47.61	1350	7/8	22	26400	12000	52800	24000
16T													
3371AL	16T single loop — Aluminum	5 5/16	135	6 15/16	175	42.54	1206	1 1/32	26	35200	16000	70400	32000
C14951	16T single loop/wide — Aluminum	5 5/16	135	7 5/16	188	60	1.7	1 1/32	26	35200	16000	70400	32000
20T								-					
3372AL	20T single loop — Aluminum	6 1/8	155	7 27/32	199	62.72	1700	1 3/16	30	44000	20000	88000	40000
C15203	20T single loop/wide — Aluminum	6 1/8	175	8 7/8	225	88.9	2520	1 1/3	34	44000	20000	88000	40000
0.000	t included. *Carbon **Aluminum							, 3					.0000

High-Load Snatch Blocks

m p a

These multipurpose blocks are a must on racing yachts of all sizes. Opening sideplates make them easy to deploy, allowing crew to quickly fasten them wherever needed—perfect for temporary leads, line deflection, and static line functions requiring small adjustments. A strop soft-attach is fixed on one side, but is easily removable on the other. The strop carries the block's primary load and articulates for a fair lead. The Velcro® strap is permanently attached to one sideplate and holds the block securely closed when sideplates are aligned—even under the highest loads. The strap has a broad reflective tab for easier operation with gloves.

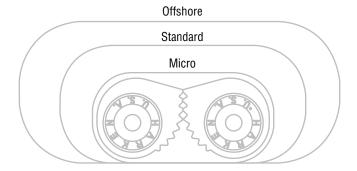
Harken composite bearing technology (ULC) ensures sheaves turn smoothly and maintain efficiency under extreme loading. Snap-fit Torlon® bearings carry sideloads. An integral headspacer prevents Hard Lube-anodized aluminum sideplates from deflecting and binding. The wide sheave allows a range of line diameters.

Torlon is a registered trademark of Solvay Advanced Polymers L.L.C. Velcro is a registered trademark of Velcro Industries B.V.I.

Sideplate rotates open allowing rigged line to be loaded into block.

A fixed Velcro strap keeps sideplates aligned and securely closed under high loads.

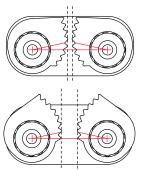
Part			eave Ø	Lei	ngth	Wei	ight	Max Ø		Maxi workin			aking ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	lb	kg	lb	kg
3299	2.3T snatch	1.5	38.5	2.5	63	2.96	84	7/16	11	5069	2300	10138	4600
3300	5T snatch	2.2	56	3.4	86	8.89	252	5/8	16	11020	5000	22040	10000
3301	8T snatch	3	75	4.5	114	17.57	498	3/4	18	17632	8000	35264	16000
3302	12T snatch	4	101	5.8	148	36.72	1041	1 3/16	30	26448	12000	52896	24000
3303	15T snatch	4.9	125	6.9	175	58.34	1654	1 3/16	30	33060	15000	66120	30000


BALL BEARING CAM CLEATS

Multiple rows of high-load ball bearings and precise V-shape reduce friction, allowing Harken cam cleats to activate with the snap of the wrist. No need for draw-through cleating: a downward flick snaps the sheet into the cam and stays exactly where you put it. Flick up and the cleat releases instantly, even under high loads. Harken cleats are the only cleats that engage under maximum line tension.

Cams engage/release loaded line instantly for precise sail control

- Multiple rows of UV-stabilized ball bearings reduce friction.
- Cam horns and V-shape for easy line entry.


Three sizes in lightweight, wear-resistant materials

- · Micro, standard, offshore sizes.
- Cam-Matic: Hard Lube-anodized aluminum, or mirror-polished stainless steel.
- Carbo-Cam: UV-stabilized fiber-reinforced Carbo composite.

Protective tooth design holds line securely

- Rounded teeth reduce line wear, squeezing rather than cutting the line.
- Each line size held by the most number of teeth.

Full range of accessories

• Flairleads, fairleads, adapter plate, wedge kits, risers, and bases.

Ball Bearing Cam Cleats

Offshore Standard Micro

CAM-MATIC

Part		Hei	ght	Leng	yth	Wie	dth	Wei	ight	М	Lin in	e Ø Ma	ах	Fasto		Maxi workin			king ad	
	Description	in	mm	in	mm	in	mm	0Z	g	in	mm	in	mm	in	mm	lb	kg	lb	kg	Pawls
150	Cam-Matic*	1 3/16	30	2 9/16	65	1 1/4	32	2.5	71	1/8	3	1/2	12	1 1/2	38	300	136	750	340	Aluminum
280	Offshore Cam-Matic‡	1 7/16	37	3 3/8	85	1 1/2	38	5.25	148	1/4	6	5/8	16 2	2 1/16	52	500	227	1000	454	Aluminum
468	Micro Cam-Matic**	7/8	22	1 7/8	48	15/16	24	0.93	26	3/32	2	1/4	6 1	1/16	27	200	91	400	181	Aluminum
491	Offshore Cam-Matic SS ‡	1 7/16	37	3 3/8	85	1 1/2	38	13.4	380	1/4	6	5/8	16 2	2 1/16	52	500	227	1000	454	Stainless steel
365	Carbo-Cam*	1 3/16	30	2 9/16	65	1 1/4	32	1.44	42	1/8	3	3/8	10	1 1/2	38	200	91	500	227	Plastic carbon-matrix
412	Double Cam-Matic*	2 1/16	53	3 17/32	81	1 1/4	32	4.5	126	5/16	8	3/8	10 2	7/16	62	500	227	750	340	Aluminum
471	Micro Carbo-Cam**	7/8	22	1 7/8	48	15/16	24	0.67	19	1/8	3	1/4	6 1	1/16	27	150	68	300	136	Plastic carbon-matrix

Cam Kits

Carbo-Cam/Fast Release Fairlead

Weight

0Z 2 54

3 85

3.36 98

4.42 127

4.85 137

3.53 100

Part					Wei	ight	Part				
No.	Description	Cam	Wedge	Fairlead	0Z	g	No.	Description	Cam	Wedge	Fairlead
Mici	o Kits						Stan	dard Kits			
472	Carbo-Cam/wedge/wire fairlead	471	297	475	1.2	33	326	Carbo-Cam/wire fairlead	365		298
469	Cam-Matic/wire fairlead	468		475	1.2	33	327	Cam-Matic/wire fairlead	150		298
473	Carbo-Cam/wire fairlead	471		475	0.9	26	458	Carbo-Cam/X-Treme Angle Fairlead	365		375
474	Carbo-Cam/X-Treme Angle Fairlead	471		476	1.7	47	459	Cam-Matic/X-Treme Angle Fairlead	150		375
470	Cam-Matic/X-Treme Angle Fairlead	468		476	1.9	55	496	Cam-Matic/Fast Release Fairlead	150		494
498	Cam-Matic/Fast Release Fairlead	468		495	1.8	52	497	Carbo-Cam/Fast Release Fairlead	365		494
469 473 474 470	Cam-Matic/wire fairlead Carbo-Cam/wire fairlead Carbo-Cam/X-Treme Angle Fairlead Cam-Matic/X-Treme Angle Fairlead	468 471 471 468	291	475 475 476 476	1.2 0.9 1.7 1.9	33 26 47 55	327 458 459 496	Cam-Matic/wire fairlead Carbo-Cam/X-Treme Angle Fairlead Cam-Matic/X-Treme Angle Fairlead Cam-Matic/Fast Release Fairlead	150 365 150 150		

43

Cam Cleat Accessories

Use these accessories to adapt our cleats for many applications, such as cleaning up cockpit controls with color-coding or leading a line cleanly to a cleat.

The 475 Micro Cam-Matic cleat and 298 wire fairleads guide line into the entrance side of the cleat, maintaining a low profile and holding line close to the cleat.

Use the 475 with the 468 and 471 Micro Cam-Matic cleats. Use the 298 wire fairlead with the 150 Cam-Matic and 365 Carbo-Cam cleats.

The 494 and 495 Fast Release Fairleads feature low-friction, angled stainless steel line guides on the exit side of the cleat. The angled lead keeps the line away from the cam to eliminate unexpected recleats during maneuvers. Use for fast spinnaker take-downs during mark roundings—anywhere fast release is crucial. Harken Cam-Matic Fairleads are made of tough, abrasion-resistant composite.

Use the 495 with 468 and 471 Micro Cam-Matic cleats; the 494 fairlead with the 150 Cam-Matic and 365 Carbo-Cam cleats.

The 375 X-Treme Angle Fairlead uses low-friction stainless steel line guides on the exit side of the cleat. This allows crew to release and recleat at angles up to 90 degrees to the cleat without centering the line. Perfect for cabintop controls and adjusting deck cleats from the rail. A must for fine-tuning Laser outhaul and cunningham controls. Harken Cam-Matic Fairleads are made of tough, abrasion-resistant composite. Use the 476 X-Treme Angle Fairlead with the 468 and 471 Micro Cam-Matic cleats; the 375 X-Treme Angle Fairlead with the 150 Cam-Matic and 365 Carbo-Cam cleats.

The 424 and 425 low-profile, top-mounted Flairleads can also be used to guide lines. They feature stainless wearguards and are available in various colors for color coding cams. Use the 424 with the 468 and 471 Micro Cam-Matic cleats. Use the 425 with the 150 Cam-Matic and 365 Carbo-Cam cleats.

Wedge kits and risers improve the angle of your cams. A range of eyestraps holds line at the cleat and provides fair leads.

Cleat and uncleat at angles up to 90 degrees.

Stainless steel loop provides low-friction turning post.

Base plate ensures optimal cleating height.

Ideal for Laser outhaul/ cunningham controls.

Part		Hei above		Hei	ght	Lenç	gth	Wid	ith	Wei	ght	Faste spac		
No.	Description	in	mm	in	mm	in	mm	in	mm	0Z	g	in	mm	Fits
Micro														
281.PAIR	Eyestrap (pair)	1/2	12			1 7/16	36	7/16	11	.16	4.5	1 1/16	27	468/471
475	Wire fairlead			15/16	23	1 7/8	48	15/16	24	.29	8	1 1/16	27	468/471
293	Flat cam riser			5/8	16	1 7/8	48	15/16	24	.5	14	1 1/16	27	468/471
294	15° angled micro cam riser			3/4	19	1 7/8	48	15/16	24	.75	21	1 1/16	27	468/471
297	Cam wedge kit					1 7/8	48	15/16	24	.16	5	1 1/16	27	468/471
476	X-Treme Angle Fairlead	7/8	22	1 7/16	37	1 5/16	33	2	51	1	29	1 1/16	27	468/471
424	Flairlead‡‡	7/16	11			1 5/8	41	5/8	16	.13	3.5	1 1/16	27	468/471
495	Fast Release Fairlead	9/16	14	1 9/16	40	1 5/16	33	1 15/16	49	.92	26	1 1/16	27	468/471
Standard	d													
145	Cam wedge kit					2 9/16	65	1 1/4	32	1	28	1 1/2	38	150/365
201.PAIR	Low-profile eyestrap (pair)	3/8	10			1 7/8	48	7/16	11	.16	4.5	1 1/2	38	150/365
295	Flat cam riser			1	24	2 9/16	65	1 1/4	32	1.5	38	1 1/2	38	150/365
296	15° angled cam riser			1 1/16	27	2 9/16	65	1 1/4	32	1.25	35	1 1/2	38	150/365
298	Wire fairlead			1 1/4	32	2 9/16	65	1 1/4	32	.5	14	1 1/2	38	150/365
375	X-Treme Angle Fairlead‡	15/16	24	2 1/4	57	1 13/16	46	2 9/16	65	1.92	56	1 1/2	38	150/365
425	Flairlead‡‡	5/8	16			2 3/16	56	1 3/16	21	.25	7	1 1/2	38	150/365
438	Cam adapter plate			9/16	14	3	76	1 7/16	36	2.5	71	1 1/2	38	150/365
494	Fast Release Fairlead	3/4	19	2 3/32	53	1 13/16	47	2 5/8	67	2.12	60	1 1/2	38	150/365
Offshore														
282.PAIR	Large eyestrap (pair)	15/16	23			2 13/16	71	3/4	19	.8	23	2 1/16	52	280
283	Offshore cam wedge kit					3 3/8	85	1 1/2	38	1.5	43	2 1/16	52	280
137.PAIR	Eyestrap (pair)	3/4	19			2	51	9/16	14	.32	9	1 1/2	38	150/365

‡Max line Ø: 10 mm (3/8"). ‡‡Indicate color: BL (blue), Y (yellow), G (green), B (black), R (red).

Cam Cleat Accessories

Wedge kits and risers are available to improve cam angles. Underdeck shims are included with angled risers and wedges for easy mounting.

Lightweight, fiber-reinforced Flairleads feature stainless wearguards for long life and are available in various colors for color-coding cams.

294

296

am Bases

Use cam swivel bases when leads must rotate to face the trimmer.

Ball bearing swivel bases feature dual rows of Delrin® ball bearings that swivel freely even under high loads. Bases include stand-up springs and a U-Adaptor to accept a variety of appropriate blocks.

The 144 is the standard configuration with a tall arm. It is ideal for mounting in the cockpit or for use on larger keelboats and small offshore boats that use 76 mm (3") plastic blocks. The lowprofile 205 is used when installation is at deck level and when smaller blocks are used. The 1574 accepts Midrange blocks.

The 216 features a second cleat for lines led vertically through the base of the swivel. It is frequently used to combine vang or backstay controls in the same swivel base that handles the mainsheet.

The 240, 241 and 639 are simple swivel bases for main and jib sheets on very small boats or for control lines on boats of all sizes.

The 402 and 403 are fitted with a double Cam-Matic cleat for use in 2-speed mainsheet systems.

The 9051 and 9052 adjustable cam swivel base with 468 Micro Cam-Matic cleat provides precise cleating. The cleating angle adjusts infinitely in a 5-17 degree range up and down for optimal line lead. In the 9051 the 16 mm sheaves feature lowfriction stainless steel ball bearings to handle high loads, ideal for controls where cleating angles change dramatically.

Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.

Cam-Matic ball bearing cam cleats.

Swivels freely under load.

Stops on base prevent swivel from over-rotating and fouling line.

144 includes adapter for 57 mm and 75 mm Carbo blocks.

Loosen screws to adjust 9051/9052 cam angle.

379 238 239

							Lin	e Ø		Fast	ener	Maxi	mum	
		Heig	ght	Wei	ght	M	in	M	ax	spa	cing	workin	ıg load	
Part No.	Description	in	mm	0Z	g	in	mm	in	mm	in	mm	lb	kg	Use with
144	Swivel base/150 Cam-Matic*	5 3/4	146	13	369	1/8	3	1/2	12	3/4	19			57 mm/75 mm/2.25"/3.00"/ratchets
205	Small swivel base/150 Cam-Matic*	4 1/2	114	12	340	1/8	3	1/2	12	3/4	19			57 mm/Big Bullet/Dinghy/2.25"/
200	Siliali Swivei Dase/130 Galli-Malic	4 1/2	114	12	340	1/0	3	1/2	12	3/4	19			small ratchets
216	Duocam swivel base/365, 471 Carbo-Cam*	5 3/4	146	16	454					3/4	19			57 mm/2.25"/3.00"/ratchets
238	150 Cam-Matic on plate/bullseye‡	1 5/16	33	4	113	1/8	3	1/2	12	1 1/2, 1	38, 25	300	136	
239	365 Carbo-Cam on plate/bullseye‡	1 5/16	33	3	85	1/8	3	3/8	10	1 1/2, 1	38, 25	200	91	
240	Bullseye swivel base/150 Cam-Matic*	2 7/16	62	7.5	213	1/8	3	1/2	12	1 1/32	26	300	136	
241	Bullseye swivel base/365 Carbo-Cam*	2 7/16	62	6.5	184	1/8	3	3/8	10	1 1/32	26	150	68	
379	471 Micro Carbo-Cam on plate/bullseye‡‡	7/8	22	1.75	50	1/8	3	1/4	6	1 1/16	27	150	68	
402	Small swivel base/412 Cam-Matic*	4 3/8	111	12.75	362	5/16	8	3/8	10	3/4	19			57 mm/2.25" double ratchets
403	Swivel base/412 Cam-Matic*	5 3/4	146	14	398	5/16	8	3/8	10	3/4	19			57 mm/2.25"/3.00" double ratchets
639	Bullseye swivel base/150 Cam-Matic*	1 15/16	75	9.14	259	1/8	3	1/2	12	1 1/32	26	300	136	
1574	Midrange swivel base/280 Cam-Matic**	5 15/16	151	23	652	1/4	6	5/8	16	1 1/16	27			Midrange
HSB538	Swivel base/471 Micro Carbo-Cam/Bullseye	1 13/16	46	3.7	105	1/8	3	1/4	6	1 1/32	26	150	68	
9051	Swivel base/468 Micro Cam-Matic/16 mm sheaves	2 3/8	60	6.1	173	1/8	3	1/4	6	1 1/32	26	200	91	
9052	Swivel base/468 Micro Cam-Matic/Bullseye	2 3/8	60	5.6	160	1/8	3	1/4	6	1 1/32	26	200	91	

Stand-Up Bases

Stand-up bases allow a wide variety of blocks to be held upright, swivel freely, or pivot so lines have a fair lead under load.

Ball-and-Socket Swivel Bases

The ball-and-socket design lets blocks articulate up to 45 degrees and swivel freely. The 460 and 461 bases have stainless steel reinforcement plates to handle the high load capacities of 57 mm and 75 mm Carbo blocks. Bases may be fitted with springs, but blocks won't hit the deck without them.

Stanchion Mount Base

The 061 stanchion mount base attaches blocks to 22 mm or 25 mm (7/8" or 1") stanchions or pulpits and is often used to lead furling lines to the cockpit. Allows blocks to swivel and pivot for fairleads.

Midrange Cruising ESP Stand-Up

Use the 1634 stand-up base with Midrange blocks and 57 mm or 75 mm Cruising ESP blocks. Block headpost fits into socket without shackle. The low-profile design is ideal for mastbase and halyard lead blocks.

Springs

Springs support blocks on padeyes, eyestraps, bases, and traveler cars, and prevent blocks from hitting the deck.


Stand-Up Boots

Made of durable, flexible PVC, stand-up boots hold blocks up without snagging lines. The 369 fits 40 mm and 57 mm Carbo and Black Magic blocks. The 370 fits 75 mm Carbo blocks.

460

461

1634: Midrange and ESP Cruising block stand-up base

Swivels and pivots freely

Blocks will not hit deck

 \oplus

(+)

 \oplus

(+)

1634

.41 mm

1 5/8"

010, 029 460, 461

25 <u>m</u>m_

(+)

(+)

41 mm

1 5/8"

25 <u>m</u>m

Part		Hei	ght	We	ight	Ba	ise Ø	Inside		Pi	in)	Maxi workin		Brea lo:		
No.	Description	in	mm	0Z	g	in	mm	in	mm	in	mm	lb	kg	lb	kg	Use with
010	Ball/socket*	1 3/4	44	3	85	2 1/8	54	3/8	10	3/16	5	400	181	1300	590	2.25"/Little Fiddle/ratchets
061	Stanchion mount base	1 1/4	32	2	57			3/8	10	3/16	5	350	159			Bullet/Big Bullet/2.25"/ratchets
460	Ball/socket/high-load*	1 3/4	44	4	113	2 1/8	54	3/8	10	3/16	5	800	363	2500	1134	57 mm Carbo
461	Large ball/socket/high-load*	2	51	4.5	128	2 1/8	54	7/16	12	1/4	6	1000	454	2500	1134	75 mm Carbo
1634	Midrange/Cruising ESP stand-up**	1 15/16	49	9	255	2 7/8	73	9/16	15	5/16	8	3500	1588	7000	3175	Midrange/Cruising ESP

Base accessories

								Shack	de pin
Part		1	Weight		Α	I	В	(Ø
No.	Description	0Z	g	in	mm	in	mm	in	mm
071.PAIR	DN adaptor	.32	9.1	2	51	7/8	22		
077	Small stand-up spring (pair)	2.4	69	1/4	32	11/16	17	3/16	5
097.PAIR	Small stand-up boot	.13	3.7	1	25	3/4	19		
369	Large stand-up boot	.45	12.7	2	51	1 9/16	40		_
370	Midrange stand-up spring (pair)	1.1	30.8	2 5/8	67	2 3/16	55		
1603.PAIR	Resorte vertical Midrange (par)	.74	21	2 1/2	64	1 3/8	35		

Accessories

Accessories are designed to make standard blocks more versatile or fill a special need. Custom products available on website.

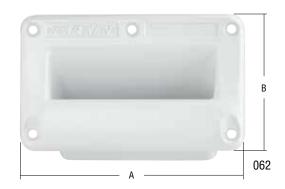
Handhold

The 062 handhold is popular on boats like Solings and scows to help hiking crew reenter the boat. It can also be used as a handle for things like engine covers. It has drain holes.

Bullseye Fairlead

Use the 237 and 339 where there is little deflection in the line such as routing a spinnaker pole foreguy aft along the cabin house.

Sail Chafe Protectors


Use the 285 to ease genoas over lifelines or past shrouds and to help large roach mainsails clear backstays.

Prefeeder

Use 947 with racing foils or furling systems.

Dinghy Clew Hook

The 433 and 394 dinghy clew hooks are designed for Lasers and other loose-footed dinghies. They install permanently on the boom and allow you to instantly attach and adjust your sail in high wind and waves.

947

433

Z420, 2.24 m (13.90'), Laser Performance © Laser Performance

Part	'	A			3	Fastene	r spacing	Part		We	ight
No.	Description	in	mm	in	mm	in	mm	No.	Description	0Z	g
062	Handhold*	5 3/4	146	3 1/2	89			394	Dinghy clew hook/404	1	28.4
237	Bullseye fairlead * *	1 1/4	32	1 1/2	38	1	25.4	433	Dinghy clew hook	.65	18.4
285	Sail chafe protector set (2)	2 3/4	70					947	Prefeeder	1	28
339	Micro bullseve fairlead±	1 1/16	27	3/4	19	.71	18		_		

^{*#10 (5} mm) FH fasteners. **#10 (5 mm) RH fasteners. ‡#8 (4 mm) RH fasteners, max line Ø 6 mm (1/4").

Self-Contained Sheaves

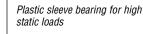
Self-contained sheaves are designed for sailors to use in custom applications.

The Micro, Bullet, and Big Bullet sheaves are Delrin with Delrin® ball bearings. They are scored for rope. 16 mm sheaves are Delrin and feature stainless ball bearings that ride in a grooved race. Midrange sheaves come in either Delrin or aluminum for wire.

Wire sheaves are Hard Lube-anodized aluminum that ride on high-load composite bearings.

Ball bearings in the 38 mm (1 1/2") and 51 mm (2") sheaves minimize friction. The 25 mm (1") wire sheave uses low-friction washers for this purpose.

Two 160 sheaves make up the 161 dual-sheave universal lead. Use this sheave to divert a line that must turn in either direction.


Use Cruising ESP sheaves to handle high static loads from halyards and reef lines. Sheaves are carbon-black Delrin for UV-protection and turn on stainless steel spacers. Contained sideload ball bearings allow sheaves to spin freely when loads are released. Sheaves require a sideplate for the sideload balls to roll on.

160

Ball bearings handle low loads and sideloads from unfair leads.

Use for:

		Shea						Cente	er pin			хØ			mum
Part		Ø		Wie	dth	We	ight	(Ø	Liı	ne	Wi	re	workin	ıg load
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	in	mm	lb	kg
160	29 mm	1 1/8	29	1/2	12	0.25	7	1/4	6.27	5/16	8			300	136
161	29 mm	1 1/8	29	7/8	22	1	28	1/4	6.27	5/16	8			300	136
265	38 mm	1 1/2	38	9/16	14	.5	14	1/4	6.27	3/8	10			300	136
277	22 mm	7/8	22	13/32	10	0.1	3	3/16	4.75	1/4	6			200	91
303	25 mm	1	25	9/32	7	0.25	7	3/16	4.75	5/32	4	3/32	2	1000	454
307	38 mm	1 1/2	38	13/32	10	1	28	1/4	6.27	3/16	5	1/8	3	1500	680
311	51 mm	2	51	13/32	10	1.5	43	5/16	8.1	1/4	6	3/16	5	2000	907
415	16 mm	5/8	16	5/16	8	0.13	4	3/16	4.75	3/16	5			250	113
1533	51 mm	2	51	7/8	22	1.5	43	1/4	6.27	5/8	16			500	227
1534	51 mm/aluminum	2	51	7/8	22	2.5	71	1/4	6.27	5/8	16	3/16	5	500	227
2760	57 mm	2 1/4	57	5/8	15	.88	25	1/4	6.27	3/8	10			300	136
6062	40 mm	1 9/16	40	11/16	17	0.8	23	5/16	8.1	1/2	12			1250	567
6063	57 mm	2 1/4	57	13/16	21	1.6	46	3/8	10	5/8	16			2500	1134
6064	75 mm	2 15/16	75	7/8	22	4.4	126	3/8	10	3/4	19			3500	1588

Big Boat Sheaves

Big Boat sheaves are available for special applications as well as for replacement sheaves in Big Boat blocks. Made of Hard Lube-anodized, 6061-T6 aluminum, sheaves feature Torlon® rollers to carry high radial loads and carbon-black Delrin® ball bearings to support sideloads and provide UV-protection. Select sheaves based on load-carrying capability.

Installation requires clamping or securing inner race.

Use for:

Mainsheets Spinnaker sheets Afterguy/foreguy Footblocks

Torlon roller/ball bearing system

Hard Lube-anodized 6061-T6 aluminum

Carbon-black balls for UV-protection

Part	She		Wid	dth	We	ight		er pin Ø	Faste	eners	Fast cir	ener cle	Max £	line)	Maxi workin			aking ad
No.	in	mm	in	mm	0Z	g	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg
500	3	76	7/8	22	6	170	3/8	10	3/8	10			9/16	14	4950	2245	9900	4490
518	4 1/2	114	1	25	16	454	3/4	19.1	3/8	10	1 3/8	35	3/4	18	7500	3401	15000	6803
519	5 1/2	140	1 1/8	29	27	765	7/8	22.28	3/8	10	1 5/8	41	7/8	22	9100	4127	18200	8254
520	7	178	1 1/8	29	45	1280	1 1/2	38	1/2	12	2 1/2	64	7/8	22	14000	6349	28000	12698
550	4	102	7/8	22	10	284	3/8	10	3/8	10			9/16	14	4950	2245	9900	4490
603	3	76	1 9/16	40	10	284	3/8	10	3/8	10			3/4	18	4950	2245	9900	4490
657	4 1/2	114	1 5/8	41	25	709	3/4	19.1	3/8	10	1 3/8	35	7/8	18	14850	6736	29700	13472
1539	2 1/2	64	1 3/8	35	7	198	5/16	8.1	5/16	8			1/2	12	3000	1361	6000	2721

Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.

Torlon is a registered trademark of Solvay Advanced Polymers, L.L.C.

V Sheaves

High-load titanium V sheaves feature the same incredibly efficient bearing set of angled titanium rollers as Harken's V blocks. Harken V sheaves are extremely versatile! Perfect for running lines underdeck, in mainsheet and spinnaker sheet or drop line systems. They are also perfect to rig clean backstay systems to steady today's slender masts and adjust mast bend. Snap fit Delrin® side covers require no tools to disassemble for maintenance.

V sheaves are available in 1.5T to 20T sizes, labeled with working loads. Use the wide sheave for two-sheet peels. Use the wide tulip sheaves to handle a single line with line-entry range of deflecting angles.

3355 3377 3356 3380 3357 3385 3379 3381

STANDARD

V sheaves are named for the unique V-shaped angled rollers that handle both axial and thrust loads.

C14843 3382

C14823 3358

T5, 28' foiling monohull @ Harry KH / INEOS TEAM UK

Part		Shea Ø	ve	Wid	th	Wei	ght	Cente Ø	r pin	Max		Maxi workin			iking ad
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
1.5T															
3355	1.5T sheave	1 7/8	47	3/4	19	2.4	68	5/8	15.8	11/32	9	3300	1500	6600	3000
3384	1.5T sheave/wide tulip	1 7/8	47	1 1/16	27	3.35	95	5/8	15.8	11/32	9	3300	1500	6600	3000
3T															
3356	3T sheave	2 3/16	56	3/4	19	2.89	82	7/8	22.8	7/16	11	6600	3000	13200	6000
3358	3T sheave/wide tulip	2 3/16	56	1 3/16	30	6.14	174	5/8	15.8	7/16	11	6600	3000	13200	6000
C14843	3T sheave/wide	2 3/16	56	1 3/16	30	5.36	152	5/8	15.8	7/16	8	6600	3000	13200	6000
5T															
3357	5T sheave	2 7/16	62	15/16	24	4.66	132	7/8	22.8	1/2	13	11000	5000	22000	10000
3378	5T sheave/wide tulip	2 7/16	62	1 3/8	35	8.04	228	7/8	22.8	1/2	13	11000	5000	22000	10000
3382	5T sheave/wide	2 7/16	62	1 1/4	32	6.42	182	7/8	22.8	1/2	13	11000	5000	22000	10000
6.5T															
3375	6.5T sheave/wide tulip	3 1/4	82	1 13/16	46	18.34	520	1 9/32	32.9	5/8	16	14300	6500	28600	13000
3379	6.5T sheave	3 1/4	82	1 5/32	29	10.02	284	1 9/32	32.9	5/8	16	14300	6500	28600	13000
8T															
3376	8T sheave/wide tulip	4 3/32	104	2 1/32	51	33.23	942	1 3/4	44.9	11/16	18	17600	8000	35200	16000
3377	8T sheave	4 3/32	104	1 9/32	32	18.52	525	1 3/4	44.9	11/16	18	17600	8000	35200	16000
12T															
3380	12T sheave	4 3/4	120	1 5/16	33	19.58	555	2 17/32	64.9	7/8	22	26400	12000	52800	24000
3383	12T sheave/wide tulip	4 3/4	120	2 9/16	65	47.62	1350	2 17/32	64.9	7/8	22	26400	12000	52800	24000
16T															
3385	16T sheave	5 5/16	135	1 17/32	39	27.3	774	2 15/16	74.9	1 1/16	26	35200	16000	70400	32000
C14823	16T sheave/wide tulip	5 5/16	135	2 27/32	72	64.55	1830	2 15/16	74.9	1 1/16	26	35200	16000	70400	32000
20T															
3381	20T sheave	6 1/8	155	1 19/32	40	37.32	1058	2 15/16	74.9	1 3/16	30	44000	20000	88000	40000

High-Load Sheaves

High-load sheaves are offered as replacement parts or for use in special applications. Their bearing system combines sideload-carrying balls with a PTFE composite bushing to carry radial loads. While not as free-rolling as the standard Harken ball/roller bearing system, this compact bearing system is extremely durable and perfect for carrying high loads in a restricted diameter.

Installation requires clamping or securing inner race.

Custom sheaves available by request. View more options on harken.com.

Use for:

Masts

Booms

Deck organizers

Through-the-transom running backstays

1734

Part			Wid	Width		Weight		Center pin Ø		Max Ø Line W				ximum king load		Breaking load*	
No.	in	mm	in	mm	0Z	g	in	mm	in	mm	in	mm	lb	kg	lb	kg	
712	4	102	7/8	22	10	284	11/16	17.6	1/2	12	5/16	8	12000	5443	32000	14515	
714	5	127	1	25	17	481	7/8	22.28	5/8	16	5/16	8	15000	6804	51000	23133	
716	6	152	1	25	23	652	7/8	22.28	5/8	16	3/8	10	18000	8165	51000	23133	
727	2 1/4	57	7/8	22	4	113	3/8	10	1/2	12	5/16	8	4950	2245	9900	4491	
754	3	76	7/8	22	5	142	1/2	12.7	1/2	12	5/16	8	7000	3175	16500	7484	
1734	8	203	1 3/8	35	46	1300	1 1/4	31.7	7/8	22	1/2	12	37000	16783	100000	45360	
C4579	6	152	1 1/4	32	32	903	1 31/64	37.74	7/8	22			41000	18600	82000	37200	
C7842	3 1/2	90	1 15/16	50	20	578	11/16	18	5/8	16			12811	5811	25622	11622	

^{*}Based on use of solid 304 stainless shafts.

Narrow Halyard & Steering Sheaves

Narrow high-load sheaves in mastheads improve sail handling, speed sail changes, and allow the use of smaller, lighter halyard winches. Used in steering systems, these sheaves return "feel" to wheel-steered boats.

Sheaves combine sideload-carrying balls with a PTFE composite bushing for radial loads. These durable sheaves are made of 6061-T6 aluminum and are well-suited for masthead and steering installations.

Installation requires clamping or securing inner race.

Use for:

Masthead/halyard sheaves Steering systems

	Sho	eave					Cent	er pin			χØ	_	Maxi		Breaking	
Part		Ø	Wi	dth	Weight		Ø		Line		Wire		working load		load*	
No.	in	mm	in	mm	0Z	g	in	mm	in	mm	in	mm	lb	kg	lb	kg
691	3	76	5/8	16	4.5	128	1/2	12.7	3/8	10	3/16	5	4000	1814	16500	7484
692	4	102	3/4	19	8	227	1/2	12.7	7/16	12	5/16	8	8250	3742	16500	7484
693	5	127	3/4	19	12	340	3/4	19.1	7/16	12	5/16	8	12000	5443	37100	16828
694	6	152	7/8	22	19	539	3/4	19.1	1/2	12	3/8	10	16000	7258	37100	16828

^{*}Based on use of solid 304 stainless shafts

Harken deck organizers lead halyards and control lines aft, allowing crew to sail from the security of the cockpit. The injection-molded composite top plate provides superior impact and UV resistance. Asymmetrical sheaves of glass-filled nylon have flared bases to lift lines up and off the deck, and combine with a proven bearing system to reduce friction. Organizers are available in two-, three-, four-, or five-sheave configurations and are stackable for multiple mounting options.


Asymmetrical sheaves lift lines off deck.

Deck organizers stack for additional configurations.

Jenga 99, J/99, 9.94 m (32.6'), J Composites, naval architect: Alan Johnstone © Gillian Pearson

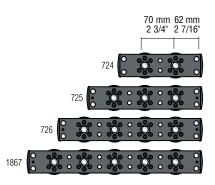
Part		Shea Ø	ive	Length Height Weight						Max	line 7	Maximum working load/sheave‡		Fasteners	
No.	Description	in	mm	in	mm	in	mm	0Z	g	in	mm	lb	kg	in	mm
40 m	m														
9000	2-Sheave	1 9/16	40	4 1/16	104	15/16	24	2.47	70	1/2	12	1544	700	1/4 FH	6 FH
9001	3-Sheave	1 9/16	40	5 3/4	147	15/16	24	3.63	103	1/2	12	1544	700	1/4 FH	6 FH
9002	4-Sheave	1 9/16	40	7 15/32	190	15/16	24	4.76	135	1/2	12	1544	700	1/4 FH	6 FH
9003	5-Sheave	1 9/16	40	9 3/16	233	15/16	24	5.93	168	1/2	12	1544	700	1/4 FH	6 FH
50 m	m														
9005	2-Sheave	1 15/16	50	5 5/16	135	1 7/32	31	4.80	136	5/8	16	2602	1180	5/16 FH	8 FH
9006	3-Sheave	1 15/16	50	7 1/2	191	1 7/32	31	7.02	199	5/8	16	2602	1180	5/16 FH	8 FH
9007	4-Sheave	1 15/16	50	9 11/16	247	1 7/32	31	9.24	262	5/8	16	2602	1180	5/16 FH	8 FH
9008	5-Sheave	1 15/16	50	11 15/16	303	1 7/32	31	11.46	325	5/8	16	2602	1180	5/16 FH	8 FH

Big Boat Deck Organizers

Use Big Boat deck organizers to lead multiple lines aft to halyard stoppers or winches. Organizers are also perfect for many other applications that call for a multiple-sheave, cheek-mounted lead block.

Deck organizers feature aluminum hardcoat-anodized sideplates for strength and corrosion resistance.

Use for:


Halyards

Reef lines

Outhauls

Pole lifts

Control lines

1867

Big boat deck organizers are available with up to 10 sheaves by custom order.

Part		She		Lenç	gth	Hei	ght	We	ight	Li	Ma ne	nx Ø Wi	ire	Maxi workin she	J,		ng load/ ave	Maxi workin			ıking ad
No.	Description	in	mm	in	mm	in	mm	OZ	g	in	mm	in	mm	lb	kg	lb	kg	lb	kg	lb	kg
724	2-sheave*	2 1/4	57	7 9/16	192	1 1/8	29	19.5	553	1/2	12	5/16	8	4950	2245	9900	4491	4950	2245	9900	4491
725	3-sheave*	2 1/4	57	10 5/16	262	1 1/8	29	27.5	780	1/2	12	5/16	8	4950	2245	9900	4491	7425	3368	14850	6736
726	4-sheave*	2 1/4	57	13 1/16	332	1 1/8	29	35	992	1/2	12	5/16	8	4950	2245	9900	4491	9900	4491	19800	8981
1867	5-sheave*	2 1/4	57	15 13/16	402	1 1/8	29	44	1247	1/2	12	5/16	8	4950	2245	9900	4491	12375	5613	24750	11227

Spinnaker Pole Cars

Harken spinnaker pole cars feature recirculating ball bearings to permit adjustment under load. They roll freely on low-beam traveler track to allow crew to adjust for optimal sail shape. Machined aluminum hardcoat-anodized races permit Torlon® bearings to transition smoothly from active to return race for smooth trimming or easing.

Cars feature captive ball bearings, making them easy to load onto the track and to maintain.

Strong, lightweight cars are constructed from one-piece solid aluminum that is Hard Lube-anodized for strength and durability.

Ring fittings are 17-4 PH stainless steel and accept piston pole ends for end-to-end jibing. Midrange and Big Boat cars accept two popular toggle studs and Harken ball-end fittings. Cars are also available from Harken's Custom Division.

Use for:

Spinnaker poles Whisker poles

Patented wire retaining clips keep balls captive, making cars easy to load and maintain. Composite corner keepers help keep ball bearings captive when the car is off the track. For a cost-effective option, CB+ cars can be modified to run on Harken non-CB track.

Cars fit low-beam track.

Pogo 50, 15.2 m (50'), Structures, Finot-Conq @ Andreas Lindlahr

Torlon is a registered trademark of Solvay Advanced Polymers, L.L.C. Forespar is a registered trademark of Forespar Products Corporation.

		Max	spin					P	in					Maxi	mum		
Part		ar	ea	Len	gth	We	ight	g.	ð	P	١	В		workin	g load		
No.	Description	ft ²	m²	in	mm	0Z	g	in	mm	in	mm	in	mm	lb	kg	Track	Pole end*
3188	Small Boat CB/ring	900	85	5	126	12	340							1125	510	2720	Piston
1645	Midrange CB/toggle	1500	140	5 3/16	132	22.4	635	1/2	12.7	1	25	2	51	2300	1043	R27	Forespar® toggle
1646	Midrange CB/bell	1500	140	5 3/16	132	23.2	658	15/32	12	1 1/2	38			2300	1043	R27	B120/B130 bell end
1647	Midrange CB/toggle	1500	140	5 3/16	132	24	680	5/8	16	1 3/16	30	2 1/8	54	2300	1043	R27	Sparcraft toggle
3189	Midrange CB/ring	1350	125	6	151	23.2	658							2100	953	R27	Piston
3097	Big Boat CB/bell	2000	186	7 1/4	184	46.4	1315	15/32	12	1 1/2	38			4050	1837	R32	B120/B130 bell end
3098	Big Boat CB/toggle	2000	186	7 1/4	184	47.2	1338	5/8	16	1 3/16	30	2 1/2	63	4050	1837	R32	Sparcraft toggle
3099	Big Boat CB/toggle	2000	186	7 1/4	184	45.6	1293	1/2	12.7	1	25	2 5/16	59	4050	1837	R32	Forespar® toggle

Soft Attachments

LOUP

LOUP® soft attachments replace heavy stainless steel shackles on racing and cruising boats. Weight savings on large offshore boats can be as much as 91 kg (200 lb).

Strong and lightweight, LOUPS are constructed using multiple coils of tough Dyneema® with Spectra® cover—one of the most durable materials made. An annealing process ensures loads are equal on all coils. Colored tracers on the cover specify LOUP strength by indicating the number of Dyneema coils.

When fitting hardware, choose the LOUP that matches the attachment method shown in the chart. Custom length LOUPS are also available.

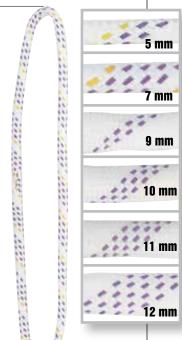
T2 Loops

Use T2 Loops in Carbo T2 blocks. These strong, lightweight soft attachments are woven of Dyneema fibers, and are load-set and locked-stitched to prevent stretch after installation.

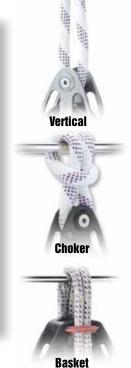
LOUP is a registered trademark of Yale Cordage.

Dyneema is a registered trademark of DSM Dyneema.

Spectra is a registered trademark of Honeywell International, Inc.



See page 18


Replacement T2 Loops

Part	Ø	Len	gth	Weig	Use	
No.	mm	in	mm	0Z	g	with
2154	3	5 1/2	140	.03	0.9	2148
2155	3	6 1/2	165	.04	1	2151
2179	3	14 1/2	370	.07	2	2148/2151

Part	Ø	Ler	ngth	We	ight		naximum ig load	Choker n workir	naximum ig load	Bas maxi workin	mum	Fits
No.	mm	in	mm	0Z	g	lb	kg	lb	kg	lb	kg	blocks
3202	5	8	203	0.3	9	1275	578	1000	453	2550	1156	3214
3203	7	10	254	0.49	14	2550	1155	2040	920	5100	2310	3230
3139	9	4	100	0.7	20	3600	1630	2880	1305	7200	3265	
3140	9	8	200	1.4	40	3600	1630	2880	1305	7200	3265	
3141	9	11	280	2	55	3600	1630	2880	1305	7200	3265	
3142	10	5	125	1.1	30	5400	2445	4325	1960	10810	4900	
3143	10	9	230	2	55	5400	2445	4325	1960	10810	4900	
3144	10	15	380	3.3	94	5400	2445	4325	1960	10810	4900	3245
3145	11	5	125	1.7	50	7200	3265	5765	2610	14415	6535	
3146	11	9	230	3.1	88	7200	3265	5765	2610	14415	6535	
3147	11	16	400	5.4	154	7200	3265	5765	2610	14415	6535	3255
3148	12	6	150	2.3	65	9010	4085	7200	3265	18020	8170	
3149	12	11	280	4.2	120	9010	4085	7200	3265	18020	8170	
3150	12	17	430	6.5	180	9010	4085	7200	3265	18020	8170	•

Stainless Steel Shackles

Forged

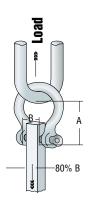
Stainless steel shackles used on Harken blocks are available separately. Multiple configurations and sizes.

Stamped Shackles

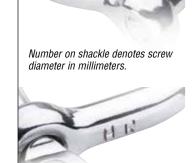
The 072, 138, 246.PAIR, and 2761 shackles are used on most of the Small Boat blocks. They are also useful for a range of other applications.

Snap Shackles

The 111, 112, and 1584 snap shackles fit a variety of blocks and make them removable. Many use a snap shackle on the lower vang block so that it can be moved from the mastbase to the toerail for use as a preventer.

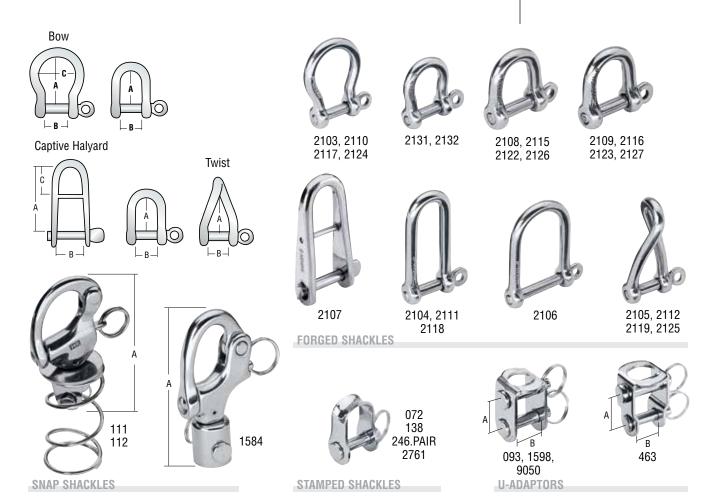

U-Adaptors

The 093 U-Adaptor allows blocks with 10 mm (3/8") posts to be attached to swivel bases or to other blocks with 10 mm (3/8") posts.


The 1598 U-Adaptor allows blocks with up to 15 mm (19/32") posts to be attached to swivel bases or to other blocks with 15 mm (19/32") posts.

The 463 U-Adaptor adapts 75 mm Carbo singles to swivel bases.

The 9050 U-adaptor allows 57/75 mm Carbo blocks to be attached to 170 Hexa-Cat Base or other blocks with 12.7 mm (1/2") posts and 6.35 mm (1/4") pins.


The breaking strengths shown are derived from tests that supported 80% of the length of the screw pin that is unsupported, which is similar to the area of a post in a block. Maximum working loads are no more than half the minimum breaking strength.

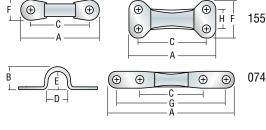
High-resistance shackles are marked "HR".

U-Adaptors attach blocks to swivel bases or to other blocks.

Stainless Steel Shackles

Tabasco V, 2-Tonner Class, 12 m (39.4') @ Bootswerft Heinrich AG

Part No. Bow 2103 2110	Description			We	ight	A		В	}	C	;	workin	g load	lo	ad
2103		in	mm	0Z	g	in	mm	in	mm	in	mm	lb	kg	lb	kg
2110	5 mm	3/16	5	0.64	18	1	25	3/8	10	11/16	17	1190	540	2380	1080
	6 mm	1/4	6	1.04	29.5	1 1/16	27	9/16	14	3/4	19	1650	750	3300	1500
2117	8 mm	5/16	8	2.48	70.5	1 1/2	38	11/16	17	1 1/8	29	3040	1380	6080	2760
2124	10 mm	13/32	10	4.88	138.5	1 7/8	48	7/8	22	1 1/4	32	4870	2210	9740	4420
Shallow E	Bow														
2131	4 mm	5/32	4	0.3	8.5	5/8	16	5/16	8	7/16	11	810	367	1620	735
	5 mm	3/16	5	0.51	14.5	11/16	17	7/16	11	9/16	14	1190	540	2380	1080
Forged "D	D"														
2108	6 mm	1/4	6	0.88	25	3/4	19	9/16	14			1650	750	3300	1500
2115	8 mm	5/16	8	2.08	59	1	25	11/16	17			3040	1380	6080	2760
2122	10 mm	13/32	10	4.22	120	1 1/4	32	13/16	20			4870	2210	9740	4420
2126	12 mm	1/2	12	6.7	190	1 1/2	38	15/16	24			7120	3230	14240	6460
High-Resi	istance (HR) "D"														
2109	6 mm	1/4	6	0.8	22.5	3/4	19	9/16	14			2770	1260	5540	2510
2116	8 mm	5/16	8	2	56.5	1	25	5/8	16			5130	2330	10260	4650
2123	10 mm	13/32	10	3.92	111	1 1/4	32	13/16	20			8210	3720	16420	7450
2127	12 mm	1/2	12	6.8	193	1 3/4	44	1	25			12000	5440	24000	10880
Long															
2104	5 mm	3/16	5	0.78	22	1 1/2	38	3/8	10			1190	540	2380	1080
2111	6 mm	1/4	6	1.34	38	1 3/4	44	1/2	13			1650	750	3300	1500
2118	8 mm	5/16	8	3.01	85.5	2 1/4	57	5/8	16			3040	1380	6080	2760
Twist															
2105	5 mm	3/16	5	0.78	22	1 7/16	37	3/8	10			1190	540	2380	1080
2112	6 mm	1/4	6	1.12	32	1 1/8	29	1/2	12			1650	750	3300	1500
2119	8 mm	5/16	8	1.84	52	1 5/8	41	11/16	17			3040	1380	6080	2760
2125	10 mm	13/32	10	4.96	140.5	1 7/8	48	3/4	19			4870	2210	9740	4420
Large Ope	en														
	5 mm	3/16	5	0.88	25	1 5/16	33	13/16	20			770	350	2200	1000
Captive H															
	5 mm	3/16	5	1.12	32	1 3/8	35	9/16	14	9/16	14	1190	540	2380	1080
Stamped															
072	Small	3/16	5	0.29	8	1/2	12	7/16	11			1250	567	2500	1134
138	Large	1/4	6	0.54	15.5	11/16	17	5/8	16			1500	680	3000	1361
	Micro (pair)	5/32	4	0.18	5	7/16	11	3/8	9			600	270	1200	545
2761	Medium	1/4	6	0.45	12.7	5/8	15	9/16	14			1500	680	3000	1361
Snap Sha				00											
111	Snap shackle	3/16	5	3	85	2 9/16	65					1000	454	2000	907
112	Large snap shackle	1/4	6	4.5	128	3 3/8	86					1500	680	3000	1361
1584	Midrange snap shackle	5/16	8	4	113	3 1/16	78					1800	816	3600	1633
U-Adaptor		0/10	J		110	3 1/10	7.0					1000	010	0000	1000
093	U-Adaptor	3/16	5	0.48	13.6	1/2	12	7/16	11			1250	567	2500	1134
463	U-Adaptor	3/16, 1/4	5, 6	0.40	16.3	9/16	14	13/32	10			1250	567	2500	1134
	Midrange U-Adaptor	5/16	8	1.57	44.4	1/2	12	7/8	22			1800	816	3600	1633
	U-Adaptor	1/4	6	0.92	26	11/16	17	5/8	15			1500	680	3000	1361


Eyestraps

Eyestraps are useful accessories. They form light-duty mounting bases for blocks, serve as lash-down points, and can be used for fairleads.

Forged 316 stainless eyestraps are extremely strong and their smooth shape won't chafe line.

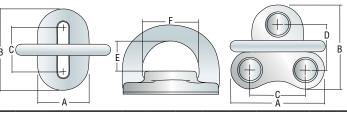
Harken offers two sizes of tough, nylon-resin eyestraps to secure shockcord, sheet bags, and other items where loads are light. Available in packages of six.

3287

Sailart 17, 4.5 m (14.8')

Part	We	ight	Faste (R		A		В		С		0)	ı		ı	F		G	ı	Н	Fits		aking ad
No.	0Z	g	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	cam	lb	kg
073.PAIR*	.16	4.5	#10	5	1 11/16	43	1/2	12	1 1/4	32	7/16	11	3/8	10	7/16	11						1600	726
074	.64	18	1/4"	6	3 1/4	83	3/4	19	1 1/2	38	5/8	16	5/8	16	9/16	14	2 3/4	70				4000	1814
137.PAIR*	.32	9	1/4"	6	2	51	3/4	19	1 1/2	38	5/8	16	5/8	16	9/16	14					150/365	3000	1361
201.PAIR*	.16	4.5	#10	5	1 7/8	48	3/8	10	1 1/2	38	9/16	14	1/4	6	7/16	11					150/365	1600	726
281.PAIR*	.16	4.5	#8	4	1 7/16	36	1/2	12	1 1/16	27	7/16	11	3/8	10	7/16	11					338/423	1000	454
282.PAIR*	.8	23	1/4"	6	2 13/16	71	15/16	23	2 1/16	52	7/8	22	3/4	19	3/4	19					280	3000	1361
419	.5	14	#10	5	2 1/2	64	3/4	19	2	51	3/4	19	5/8	16	1/2	12					418	1600	726
445.PAIR*	.09	2.5	#8	4	1 1/2	38	3/8	10	1 1/16	27	7/16	11	3/8	10	7/16	11						1000	454
1558	1	28	1/4"	6	2 1/4	57	5/8	16	1 3/4	45	5/8	16	7/16	11	1 1/8	29			5/8	16		6000	2722
2133	.35	10	#10	5	1 13/16	47	3/4	19	1 1/2	37	3/8	10	9/16	14	3/8	10						2500	1130
2134	.58	16.3	1/4"	6	2 1/4	56	13/16	21	1 3/4	43	11/16	17	5/8	15	1/2	12						3500	1588
3287	.28	7.8	1/4"	6	1 7/8	46	5/8	16	1 13/64	30	3/8	10	7/16	12	3/4	19						1200	544
3288	.14	4	#10	5	1 11/32	34	1/2	13	29/32	23	3/8	10	3/8	10	1/2	13						1200	544
DO NOT use	Harkei	n equip	ment f	or hu	man susp	ension	unless	orodu	ct is speci	fically	certified	and la	beled fo	r such	use.	*Sold i	n pair	S.					

Folding padeyes keep deck and passageways clear. They're ready to attach a snatch block or fender, but fold safely out of the way when not needed.


Bolt-down bases and D-rings are 316 stainless steel. A vulcanized thermoplastic pad prevents rattling and holds the D-ring in position.

Use for:

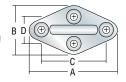
Loops/soft attachments Jacklines and tethers Leads Tie downs Lifting points Fenders

HOW SHOULD I ALIGN THE LOAD ON A FOLDING PADEYE?

Folding padeyes differ from conventional padeyes in that the load should be perpendicular to the hinge and bail instead of in line with it. The strongest positions are with the D-ring vertical or leaning toward the fold-down position, which focuses the load on the side anchored with two screws.

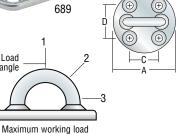
Part		-	١	E	3	C	;	D)	E		ı	=	Wei	ght	Maxi workin	mum ig load		iking ad		eners H)
No.	Description	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	0Z	g	lb	kg	lb	kg	in	mm
3206	6 mm low-load	1	26	1 5/8	41.5	7/8	23			19/32	14.9	1 1/8	28	2.25	65	1760	800	3520	1600	1/4	6
3207	6 mm	1 7/8	47	1 5/8	41.5	1 1/8	28	15/16	23	19/32	14.9	1 1/8	28	2.75	78	3080	1400	6160	2800	1/4	6

Padeyes


Padeves are great for mounting blocks and are also used as attachment points for staysails, reefing blocks, and hundreds of other items.

Harken offers a range of stainless steel padeyes. The diamond-shaped padeves, 688 and 689, are 316 stainless and often used at mastbases where the diamond shape allows them to be mounted very close together. The 2759 is 316 cast stainless steel. The 627, 629, and 648 padeyes are 17-4 PH stainless.

For maximum strength always align fixed padeye bails to the load.



2759

Load

			Ma	ximum w	orking	load				Breaki	ng load			Faste	eners
Pa	art	1		2	2	3	}		1	:	2	3	3	(F	H)
N	0.	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	in	mm
6	27	5000	2270	4500	2040	4300	1950	10000	4535	9000	4080	8600	3900	1/4	6
6	29	20000	9070	12000	5440	14000	6350	40000	18140	24000	10890	28000	12700	1/2	12
6	48	11800	5358	10375	4705	8500	3855	23600	10716	20750	9430	17000	7710	3/8	10
6	88	3800	1770	5000	2270	4300	1950	7800	3540	10000	4535	8600	3900	1/4	6
6	89	8500	3855	8000	3628	7800	3540	19000	8618	17200	7800	15600	7075	5/16	8
27	759	2550	1156	2392	1086	2450	1111	5100	2313	4784	2172	4900	2222	1/4	6

Part			١	В	}	C	;)	E		F	:	G	i	We	ight
No.	Description	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	OZ	g
627	Small round	2 1/4	57			1 1/16	27	1 3/16	30	1 3/16	30	5/8	16	1 5/16	24	4.16	118
629	Large round	3 3/4	95			1 3/4	44	1 7/8	48	2	51	1 1/16	27	1 3/4	44	23	652
648	High-load medium	3	76			1 5/16	33	1 9/16	40	1 15/16	50	1 1/8	29	1 7/16	37	11	312
688	Small diamond	3 1/8	79	2	51	2 3/8	60	1 1/4	32	1 3/16	30	9/16	14	7/8	22	4.75	135
689	Large diamond	3 7/8	98	2 5/16	59	2 7/8	73	1 3/8	35	1 9/16	40	7/8	22	1 1/16	27	7.5	213
2759	Padeye/fits 22 mm cars with sheaves	2 1/4	56	3/4	18	1 1/2	38			1	26	9/16	15	5/8	16	1.3	38

Harken Gizmos

Harken introduces Gizmos, a growing line of engineered soft-attach terminations and through-deck pieces. Gizmos acknowledge riggers' desires to minimize weight and eliminate as many heavy metal fasteners as possible.

Harken's reputation for precision manufacturing assures the Gizmos are precision-sized and fit together perfectly when assembled. Perhaps most importantly, our distribution network guarantees Gizmos are available in the quantities you need—when you need them.

Through-Deck Bushings

Single-sided through-deck bushings are designed to protect decks and lines from chafing using any through-deck application. Double-sided through-deck bushings are perfect for installing soft-attach loops to protect line from wear and also to separate line.

Padeye Kits

Padeye kits include a cross pin, waterproof cap and O-ring and convert a double-sided bushing into a through-deck, watertight padeye. The cross pin attaches the rope/loop and the cap snaps over the top to keep water out.

Loops

Soft-attachments are available to fit the Gizmo through-deck bushings and padeye kits.

Stay tuned, Harken will soon be offering more Gizmo rigging solutions!

SINGLE THROUGH-DECK BUSHINGS

DOUBLE THROUGH-DECK BUSHINGS

Harken Gizmos

Through-Deck Bushings

		Cente	r hole	Outs	side						Deck ti	nickness				Maxi	imum
Part		Q	j	Q	j	Sha	ft Ø	Drill	size	M	in	Ma	ax	We	ight	workin	ng load
No.	Description	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	OZ	g	lb	kg
9060	6 mm/single	0.236	6	0.728	18.5	0.354	9	13/32	10			.787	20	0.1	2.8		
9061	8 mm/single	0.313	8	0.984	25	0.472	12	1/2	13			1.181	30	0.25	7.2		
9062	10 mm/single	0.394	10	1.102	28	0.591	15	5/8	16			1.181	30	0.38	10.8		
9063	12 mm/single	0.472	12	1.228	31.2	0.669	17	23/32	18			1.181	30	0.47	13.2		
9064	14 mm/single	0.551	14	1.606	40.8	0.827	21	7/8	22			1.181	30	0.8	22.7		
9070.0608	6 mm/double/6-8 mm deck	0.236	6	0.98	24.9	0.512	13	9/16	14	0.236	6	0.315	8	0.23	6.5		
9070.0810	6 mm/double/8-10 mm deck	0.236	6	0.98	24.9	0.512	13	9/16	14	0.315	8	0.394	10	0.25	7.1		
9070.1013	6 mm/double/10-13 mm deck	0.236	6	0.98	24.9	0.512	13	9/16	14	0.394	10	0.512	13	0.27	7.6		
9071.0810	8 mm/double/8-10 mm deck	0.313	8	1.106	28.1	0.591	15	5/8	16	0.315	8	0.394	10	0.34	9.7		
9071.1013	8 8 mm/double/10-13 mm deck	0.313	8	1.106	28.1	0.591	15	5/8	16	0.394	10	0.512	13	0.37	10.4		
9071.1318	8 mm/double/13-18 mm deck	0.313	8	1.106	28.1	0.591	15	5/8	16	0.512	13	0.709	18	0.41	11.5		
9071.1828	8 8 mm/double/18-28 mm deck	0.313	8	1.106	28.1	0.591	15	5/8	16	0.709	18	1.102	28	0.47	13.4		
9072.1013	3 10 mm/double/10-13 mm deck	0.394	10	1.228	31.2	0.669	17	23/32	18	0.394	10	0.512	13	0.49	13.9	1540	700
9072.1318	10 mm/double/13-18 mm deck	0.394	10	1.228	31.2	0.669	17	23/32	18	0.512	13	0.709	18	0.54	15.2	1540	700
9072.1828	10 mm/double/18-28 mm deck	0.394	10	1.228	31.2	0.669	17	23/32	18	0.709	18	1.102	28	0.61	17.4	1540	700
9072.2848	10 mm/double/28-48 mm deck	0.394	10	1.228	31.2	0.669	17	23/32	18	1.102	28	1.890	48	0.77	21.8	1540	700
9073.1013	12 mm/double/10-13 mm deck	0.472	12	1.606	40.8	0.827	21	7/8	22	0.394	10	0.512	13	0.91	25.7	3300	1500
9073.1318	12 mm/double/13-18 mm deck	0.472	12	1.606	40.8	0.827	21	7/8	22	0.512	13	0.709	18	0.98	27.7	3300	1500
9073.1828	12 mm/double/18-28 mm deck	0.472	12	1.606	40.8	0.827	21	7/8	22	0.709	18	1.102	28	1.1	31.1	3300	1500
9073.2848	12 mm/double/28-48 mm deck	0.472	12	1.606	40.8	0.827	21	7/8	22	1.102	28	1.890	48	1.34	38	3300	1500
9074.1013	3 14 mm/double/10-13 mm deck	0.551	14	1.874	47.6	0.945	24	31/32	25	0.394	10	0.512	13	1.38	39	5060	2300
9074.1318	3 14 mm/double/13-18 mm deck	0.551	14	1.874	47.6	0.945	24	31/32	25	0.512	13	0.709	18	1.46	41.5	5060	2300
9074.1828	14 mm/double/18-28 mm deck	0.551	14	1.874	47.6	0.945	24	31/32	25	0.709	18	1.102	28	1.61	45.7	5060	2300
9074.2848	14 mm/double/28-48 mm deck	0.551	14	1.874	47.6	0.945	24	31/32	25	1.102	28	1.890	48	1.91	54.2	5060	2300
9075.1013	3 16 mm/double/10-13 mm deck	0.625	16	1.98	50.3	1.024	26	1 1/32	27	0.394	10	0.512	13	1.61	45.6	7480	3400
9075.1318	16 mm/double/13-18 mm deck	0.625	16	1.98	50.3	1.024	26	1 1/32	27	0.512	13	0.709	18	1.71	48.4	7480	3400
9075.1828	16 mm/double/18-28 mm deck	0.625	16	1.98	50.3	1.024	26	1 1/32	27	0.709	18	1.102	28	1.88	53.2	7480	3400
9075.2848	16 mm/double/28-48 mm deck	0.625	16	1.98	50.3	1.024	26	1 1/32	27	1.102	28	1.890	48	2.22	62.8	7480	3400

Padeye Kits

Part		Weig	ht	Maxim working		
No.	Description	0Z	g	lb	kg	Use with
9072.PADEYE	10 mm padeye kit	0.19	5.3	1540	700	2173
9073.PADEYE	12 mm padeye kit	0.41	11.6	3300	1500	3214, 3294AL, 3366AL
9074.PADEYE	14 mm padeye kit	0.63	17.9	5060	2300	3230, 3299
9075.PADEYE	16 mm padeye kit	0.84	23.9	7480	3400	3245, 3295AL, 3367AL

Loops

Part	Ø	Lend	ıth		mum Ig load	Brea lo:			Use with	Use with
No.	mm	in	mm	lb	kg	lb	kg	Orientation	blocks	padeye
9072.LOOP	4	9 1/16	230	1540	700	3080	1400	Straight	2173	10 mm
9073.LOOP	5	10 1/4	260	3300	1500	6600	3000	Straight	3214, 3294	12 mm
9074.LOOP	6	12	305	5060	2300	10120	4600	Straight	3230, 3299	14 mm
9075.LOOP	7	12 13/16	325	7480	3400	14960	6800	Straight	3245, 3295	16 mm

Loops are sized to work with blocks referenced in padeyes with up to 28 mm deck thickness. Deck thickness over 28 mm require longer loops. Contact Harken.

Removable & **Fixed Padeyes**

Removable Padeyes

Harken offers a variety of removable padeyes for blocks from 57 mm Black Magic, to custom blocks with maximum working loads of 23,000 kg (50,715 lb). Bases swivel so padeyes align to the load. This prevents the reduction of the block's maximum working load. The swivel feature is a Harken exclusive.

Fixed Padeves

In-deck padeves are recessed into the deck creating a discreet, low-profile design. Lightweight and compact, Harken padeyes work well with almost any soft-attach block, including Black Magic Loop blocks, Snatch blocks and V blocks.

Padeyes are mirror-polished, stainless steel to complement the look of classic and modern yachts.

C9775

C9240

See page 89

627

648

629

In-deck loop padeyes provide a clutter-free deck.

REMOVABLE PADEYES

C10768

C9512

C9511

C9760

Removable Tops

		Above	deck	147-			mum	
Part		Ø		we	ight		ig load	Use
No.	Description	in	mm	0Z	g	lb	kg	with
HC8207	Bail top	2 1/4	57	7.4	209	4410	2000	HC7340
HC7327	Swivel top	2 1/4	57	9.6	272	5005	2270	HC7340, 627
HC7388	Swivel top	3 1/4	83	22.4	635	11814	5358	C10768, HC7389, 648
HC7224	Swivel top	4 1/4	108	28.5	807	20000	9070	HC7403, C9512, 629
C6779	Stand-up toggle top*	4 1/4	108	54.8	1553	20000	9070	HC7403, C9512
C9374	Stand-up toggle top*	3 15/16	100	86	2439	33075	15000	C9511, C9775
C9761	Stand-up toggle top*	6 1/2	165	176.3	4999	50715	23000	C9760, C9240

Assemblies (Top & Bottom)

Part	Comp	onent
No.	Deck cup	Top
HC7852	HC7340	HC8207
HC7343	HC7340	HC7327
HC6107	HC7389	HC7388
HC8224	HC7403	HC7224
C9527*	C9511*	C9374*
C9758*	C9760*	C9761*

Removable Padeye Deck Cups

		Above						mum	
Part		Ø		We	ight		workir	ıg load	Use
No.	Description	in	mm	0Z	g	Fasteners	lb	kg	with
HC7340	Bolt-down deck cup	2 1/4	57	4.5	127	4 x M6	5005	2270	HC8207, HC7327
C10768	Stud deck cup*	3 1/4	83	45	1275	1 x M39	11025	5000	HC7388
HC7389	Bolt-down deck cup	3 1/4	83	12.8	362	4 x M10	11814	5358	HC7388
HC7403	Bolt-down deck cup	4 1/4	108	41.6	1179	4 x M12	20000	9070	HC7224, C6779, C9584
C9512	Stud deck cup*	3 3/4	95	53.8	1524	1 x M48	26460	12000	HC7224, C6779
C11177	Soft attachment*	3 1/2	90	127.4	3610	1 x M60	22046	10000	C11173, C11334
C9511	Stud deck cup*	3 15/16	100	71.1	2016	1 x M56	33075	15000	C9374, C11003
C9775	Bolt-down deck cup*	5 1/2	139	63.2	1792	6 x M16	33075	15000	C9374, C11003
C9760	Stud deck cup*	4 1/2	114	148	4196	1 x M76	50715	23000	C9761
C9240	Bolt-down deck cup*	6 1/2	165	88.8	2517	6 x M20	50715	23000	C9761

Fixed Padeves

Part		Above Ø		We	ight		mum ig load
No.	Description	in	mm	0Z	g	lb	kg
C9064	5T soft attachment*	3 11/32	85	41.6	1179	11025	5000
C8997	12T soft attachment*	4 3/16	106	88.2	2500	26460	12000
C9153	5T U-Bolt*			17.8	505	11025	5000
C9057	9T U-Bolt*			37.4	1021	19845	9000
C10063	12T U-Bolt*			106	2215	26460	12000

FIXED PADEYES

DO NOT use Harken equipment for human suspension unless product is specifically certified and labeled for such use. *Contact Harken to request quote and lead time.

Lead Rings

Harken lead rings are simple, weight-saving devices used to route line for jib in-haulers, twings, barberhaulers, Lazy Jacks, cascading backstays and other applications requiring minimal fine-tune adjustments. Rings are Hard Lube-anodized 6061-T6 aluminum for a smooth, slippery surface. With no moving parts, wear is minimal.

Part		Cen hol Ø	е		groove idth	We	ight
No.	Description	in	mm	in	mm	0Z	g
3269	Lead ring	5/16	8	3/16	5	0.093	2.65
3270	Lead ring	7/16	10	1/4	6	0.155	4.4
3271	Lead ring	9/16	14	7/16	10	0.414	11.75
3272	Lead ring	7/8	20	9/16	14	1.34	37.85
3273	Lead ring	1 1/8	28	7/8	20	3.7	105
3282	Floating jib lead ring	23/32	18	5/16	8	1.36	38.5
3283.PAIR	Lead ring (pair)	3/16	5	1/8	3	0.029*	0.82*
3284.PAIR	Lead ring (pair)	1/4	6	5/32	4	0.053*	1.5*
C15267	4.5T floating	1	25	1 1/3	33	7.4	210
C12814	8T floating	1 7/16	37	1 27/32	47	10.23	290
C12343	12T floating	2 1/4	57	3 1/8	80	31.4	890
C15229	16T floating	3	78	4 1/8	105	98.77	2800

^{*}Weight each.

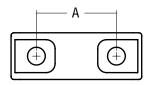
I'M THINKING OF USING HARKEN LEAD RINGS TO ADJUST MY VANG. WHAT ARE YOUR THOUGHTS?

Harken Lead Rings should only be used for applications with high static loads, where trimming angles aren't acute, or where only minor adjustments are needed. They will definitely save you weight in your vang system, but you'll be adding friction to the line compared to freerunning ball bearing blocks.

C12343

C15229

Jib Leads & Fairleads


Bolt-Down Fairleads

Harken Bolt-Down Fairleads are used as shallow-angle line deflectors on boats 6 - 15 m (20 - 50'). These weight-saving fairleads are built of 6061-T6 Hard Lube-anodized aluminum for durability. Smooth surfaces and radiused center holes minimize line wear.

Bolt-Down Fairleads are available in single, double, and triple configurations with 12 or 16 mm hole sizes.

Grand Prix Jib Leads

Strong aluminum jib leads deflect jib sheets to winches, preventing overrides. These jib leads have two small drilled holes through which a loop can be spliced to attach the hobble. This temporarily secures the jib/genoa clew to free-up a winch for mark roundings.

Fastener spacing

TECH TIP

Hex-head bolts are ideal for one-person through-deck fastening as the hexagonal head is held securely by the sides of the inset when being tightened.

Part		Lenç	yth	Wid	ith	Hei	ght	Max	line Ø	Wei	ight	Faste	ners*	A	Maxi workin	mum ig load	Breaki	ng load
No.	Description	in	mm	in	mm	in	mm	in	mm	0Z	g	in	mm	mm	lb	kg	lb	kg
Bolt-E	Down Fairlead																	
3274	Single/12 mm hole	1 7/8	48	11/16	18	1 1/8	28.2	3/8	10	.99	28	1/4	6	32	2000	908	4000	1816
3275	Double/12 mm hole	2 7/8	74	11/16	18	1 1/8	28.2	3/8	10	1.73	49	1/4	6	57.4	2000	908	4000	1816
3276	Triple/12 mm hole	3 7/8	99	11/16	18	1 1/8	28.2	3/8	10	2.43	69	1/4	6	82.8	2000	908	4000	1816
3277	Single/16 mm hole	2 3/8	60	7/8	22	1 1/4	31.8	9/16	14	1.66	47	5/16	8	37	4000	1816	8000	3632
3278	Double/16 mm hole	3 9/16	91	7/8	22	1 1/4	31.8	9/16	14	2.82	80	5/16	8	67.5	4000	1816	8000	3632
3279	Triple/16 mm hole	4 3/4	121	7/8	22	1 1/4	31.8	9/16	14	3.95	112	5/16	8	98	4000	1816	8000	3632
Jib le	ad																	
3280	Midrange	2 15/16	75	7/8	22	1 7/16	37	1/2	12	2.97	84	1/4	6	55	1500	680	3000	1360
3281	Big Boat	4 15/16	125	1 1/8	29	2 5/16	58	7/8	22	9.72	276	7/16**	10***	96	4250	1930	8500	3860

*HH, SH, CH in 6 mm, 5/16" and 8 mm. Size 1/4" in SH only. **7/16" in HH and SH. ***10 mm in HH, SH and CH.

Aluminum Tiller Extension

The rigid anodized body of this tiller extension transmits subtle boat and rudder movements, allowing the skipper to steer by the feel of the helm. The simple and lightweight design has no unnecessary frills—every aspect contributes to its strength, stiffness, or comfort. The universal joint and nonslip foam grip are UV-protected and perfect for full dagger-grip and fingertip steering.

Base cover snaps off to remove tiller extension.

Universal joint rotates 360°.

Nonslip foam rubber grip.

Part		Len	gth		ıbe Ø	We	ight	Fast spa		Faste	eners	Joint	Tube
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	type	material
7100.24	Tiller extension	23 5/8	600	5/8	16	4.1	117	1 1/4	31.8	3/16	5	Universal	Aluminum
7100.30	Tiller extension	29 1/2	750	5/8	16	4.9	138	1 1/4	31.8	3/16	5	Universal	Aluminum
7100.33	Tiller extension	31 1/2	800	5/8	16	5.2	149	1 1/4	31.8	3/16	5	Universal	Aluminum
7100.36	Tiller extension	35 7/16	900	5/8	16	5.6	160	1 1/4	31.8	3/16	5	Universal	Aluminum
7100.42	Tiller extension	41 3/8	1050	5/8	16	6.3	178	1 1/4	31.8	3/16	5	Universal	Aluminum
7100.48	Tiller extension	47 1/4	1200	5/8	16	7.1	203	1 1/4	31.8	3/16	5	Universal	Aluminum
7101	Tiller extension base*	1 3/4	44			0.18	5	1 1/4	31.8	3/16	5		
7102	Replacement universal joint			5/8	16	0.46	13					Universal	

7100.24 7100.30 7100.33 7100.36 7100.42 7100.48

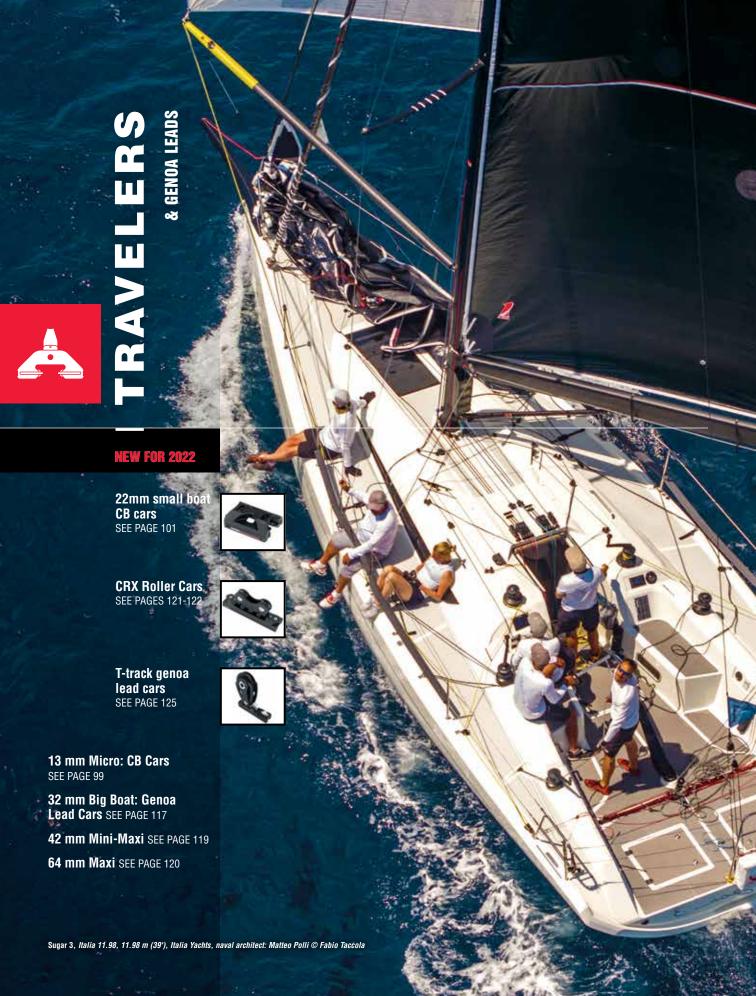
Halyard Tensioners

Designed for rope or wire halyards on large cruisers, the Harken halyard tensioner locks halyards at full hoist and frees your halyard winch for other functions.

The one-piece aluminum car body is Hard Lube-anodized for durability. Track is extruded from 6061-T6 aluminum and hardcoat-anodized for a hard, long-lasting surface.

Choose the 40 mm version in single-pin, double-pin, or triple-pin configurations based on required working load. 32 mm version available in single-pin only. Custom cars can be designed to handle higher loads.

HC9733 HC9503 HC9953

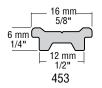

HC9639 HC9504

To lock pin in up position, pull the handle up with a lanyard or by hand and twist 90 degrees.

Part		Len	gth	Wi	dth	Wei	ght	Maximum w	orking load
No.	Description	in	mm	in	mm	0Z	g	lb	kg
32 mm T	-Track								
HC9639	Single-pin car	6	152	2 1/4	57	18.67	529	6615	3000
HC9733	Self-locking 32 mm track	29 1/2	750	1 1/4	32				
40 mm T	-Track								
HC9504	Single-pin car	6 5/16	160	2 9/16	65.1	20.34	577	8818	4000
HC9503	Self-locking 40 mm track for single/double pin	29 1/2	750	1 9/16	40	31.39	890		
HC9953	Self-locking 40 mm track for single/double pin	59 1/16	1500	1 9/16	40	60.56	1717		

^{*}Fasteners not included

Dinghy Pinstop Jib Lead Cars


These easy-to-adjust cars combine a spring-loaded pinstop with precise track spacing. Use on dinghies and small sport boats with jibs up to 13 m^2 (140 ft^2). Cars are built of tough 6061-T6 aluminum that is Hard Lube-anodized for durability. Track is hardcoat-anodized.

The 450 pinstop jib lead has a removable bail to attach a spring and block. The 452 bullseye lead has a controlled pivot angle so the cleat is always within easy reach.

Flexible, lightweight, lashing attachment allows block to articulate freely on 450 jib car.

ROSA 2, Rosso 28 8m50 Chantier des ileaux/Paolo Bua Truc Design © Emmanuel Van DETH

Cars

Part		Len	th Width		Height		Weight		Maximum working load		Breaking load			
No.	Description	in	mm	in	mm	in	mm	0Z	g	lb	kg	lb	kg	Track
450	Bail/pinstop	2 5/8	67	15/16	23	1 1/16	27	2	55	350	159	700	318	453
452P	Bullseye/swivel/365 Carbo-Cam (port)	3 1/8	79	3 7/16	87	2 7/16	62	7	194	250	113	500	227	453
452S	Bullseye/swivel/365 Carbo-Cam (stbd)	3 1/8	79	3 7/16	87	2 7/16	62	7	194	250	113	500	227	453

Track

Part	Len	ight	Fasteners (FH)					
No. Description	in	m	in	mm	0Z	g	in	mm
453.9.5 Low-beam/pinstop holes*	9 1/2	0.24	3	76	1.22	35	#10	5
453.12 Low-beam/pinstop holes*	11 11/16	0.3	3	76	1.5	43	#10	5
453.15 Low-beam/pinstop holes*	14 11/16	0.37	3	76	1.8	52	#10	5
453.18 Low-beam/pinstop holes*	17 11/16	0.45	3	76	2.3	65	#10	5
453.24 Low-beam/pinstop holes*	23 11/16	0.6	3	76	3.1	87	#10	5

^{*1}st hole 34 mm (1 3/8").

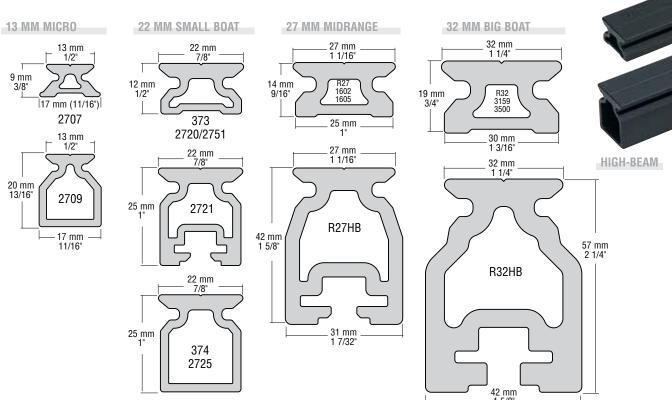
Ordering Traveler Systems

1. Determine System Size

Determine size of traveler system (13, 22, 27, 32, 42, or 64 mm) based on mainsail area, placement on the boom, and mono- or multihull. See **Mainsail Traveler System Size Selection** chart. Typical boat lengths are listed as a guideline only.

Typical Boat Lengths:

22 mm Small Boat: 6.7 - 8.5 m (20' - 28') 27 mm Midrange: 7.9 - 10.7 m (26' - 35') 32 mm Big Boat: 10.4 - 12.8 m (34' - 46')


LOW-BEAM

Mainsail Traveler System Size Selection

	Maximum mainsail area											
		Mon	ohulls			Mult	ihulls					
	End-boon	n sheeting	Mid-boon	n sheeting	End-boon	ı sheeting	Mid-boon	ı sheeting				
Cars	ft²	m²	ft²	m²	ft²	m²	ft²	m²				
Dinghies/Light Daysailers												
13 mm Micro CB	110	10.2	85	8	85	8	70	6.5				
22 mm Small Boat CB: low-load	125	11.6	100	9.3	100	9.3	80	7.5				
22 mm Small Boat CB: standard	160	14.9	135	12.5	135	12.5	110	10.2				
22 mm Small Boat CB: high-load:1250 series	200	18.6	160	14.9	160	14.9	135	12.5				
27 mm Midrange CB: standard	350	32.5	285	26.5	275	25.5	215	20				
Small Offshore Boats/Heavy Daysailers												
22 mm Small Boat CB: standard	150	14	125	11.5	135	12.5	110	10.2				
22 mm Small Boat CB: high-load:1250 series	190	17.5	150	14	160	14.9	125	11.5				
27 mm Midrange CB: standard	260	24	215	20	215	20	160	14.9				
27 mm Midrange CB: high-load	300	28	240	22	240	22	190	17.5				
Large Offshore Boats												
32 mm Big Boat CB: standard	425	39.5	350	32.5	350	32.5	300	28				
32 mm Big Boat CB: high-load	550	51	450	42	450	42	350	32.5				
32 mm Big Boat CB: 2 stand-up toggles/32 mm CRX Roller: 3074	575	53.4	500	46.5	500	46.5	425	39.5				
32 mm Big Boat CB: 2 T3201Bs joined by 580	700	65	525	49	525	49	450	42				
32 mm Big Boat CB: 2 high-load cars coupled	1100	102	900	83.6	900	83.6	750	69.7				
42 mm Mini-Maxi: 3068/32 mm CRX Roller: 3075	1100	102	900	83.6	900	83.6	750	69.7				
64 mm Maxi	1400	130	1100	102	1100	102	900	83.6				

2. Select Track

Select size and length of track (sizes listed by width measurement of top of track in millimeters). Choose low-beam track if it will be supported the entire length. Choose high-beam track for spanning companionways, cockpits, etc.

Ordering Traveler Systems

3. Select Car & Purchase Requirements

Based on system size and purchase requirements, select a car and accessories that match track and load requirements. Select control blocks for the car.

A kit contains car-mounted components to make a 2:1, 3:1, or 4:1 system. 27 and 32 mm systems only.

Cars come standard with shackles for attaching the mainsheet to the car. Upgrade to a stand-up toggle with control tangs to attach high-performance ball bearing control blocks. See Purchase Selection Guides for examples and sizing.

4. Choose End Controls

Choose end controls that mate with the control blocks on the traveler car for the correct purchase system, including a deadend. allowing clean-running lines. Use Carbo ball bearing end controls with toggle-mounted, ball bearing control blocks, or use ESP sleeve bearing end controls with ESP car-mounted, sleeve-bearing control blocks.

Options include end controls with attached cams, or purchase cams separately and mount remotely. See pages 256 - 257 for common systems.

5. Choose Endstops

Endstops are designed to absorb shock loads and should be installed when end controls are not used. Trim caps finish off track ends cleanly. Select high- or low-beam endstops/trim caps to match track. Low-beam, line-shedding endstops prevent snags. Sold in pairs.

6. More Information

Previous steps show the most common configurations. Other options include windward sheeting cars, soft attachments, coupled cars, track risers, and track splice links.

If you have questions, contact a professional rigger or Harken Technical Service at technicalservice@harken.com.

SOFT-ATTACH

TRACK RISERS

Ordering Genoa Lead Systems

The chart below sizes lead cars for the #1, #2, and #3 genoas based on typical loads for these sails. See Block Loading vs Angle of Deflection and Genoa System Loading on page 275 to size for different deflection angles and wind speeds. Visit www.harken.com or see page 255 for common configurations.

	Maximum sail area 32 mm Big Boat										
Adjustable	22 ı Small		27 ı Midra		Stan	dard	High-	load	Mii Ma		
genoa lead cars	ft²	m²	ft²	m²	ft²	m²	ft²	m²	ft²	m²	
#1 & #2 genoa	450	41	750	70	1500	139	2700	251	4400	409	Assumes 155% genoa/25 knots apparent wind/45° sheet lead angle
#3 genoa	175	16	330	31	435	40	650	60	1300	121	Assumes 100% genoa/40 knots apparent wind/60° sheet lead angle

CB TRAVELERS & GENOA LEAD CARS

Harken ball bearing traveler and genoa lead cars with multipart purchases allow easy adjustment of loaded sails from the cockpit. Whether racing or cruising, these smooth-rolling systems pay huge dividends in sail control and are safer and faster than playing the sheet. Patented CB (captive bearing) systems are available in four sizes to fit boats from the smallest dinghies to big boats. Non-CB systems (CRX, Mini-Maxi, and Maxi) are offered for larger yachts.

Strong, corrosion-resistant cars and track stand up to sun, salt, and time

- One-piece, 6061-T6 aluminum cars Hard Lube-anodized, UV-stabilized.
- · Cars CNC sculpted to remove excess weight.
- Track is 6061-T6 aluminum, hardcoat-anodized.

Low-friction ball bearing cars for easy adjustment under load

 Torlon® bearings roll smoothly under both high and low loads.

Easy loading and maintenance

· CB wire retaining clips and composite corner keepers keep ball bearings captive when car is off the track.

Choice of end-boom or mid-boom configurations

· Use with high-beam track when raising traveler out of cockpit.

Cost-effective retrofit options

• CB+ cars can be modified to run on old style Harken non-CB track supplied until 2003; upgrade cars without replacing track. Look for the plus sign on the end of the car to confirm that it is a CB+ car.

Replacement kits restore traveler performance

- · Harken replacement traveler kits are the fastest, easiest way to replace an old traveler with one that fits and works correctly. Take the guesswork out of picking the right parts.
- · Five boxed kits come in three sizes: two Small Boat, two Midrange, and one Big Boat.
- · Kits meet installation requirements of boats from 5.5 - 13.4 m (18 - 44').
- . Kits include car and end controls: purchase track and fasteners separately.

Ball or roller bearing control block options

- · Stand-up toggles with ears attach Carbo or Black Magic control blocks for 2:1 up to 6:1 systems.
- · Pair with Carbo ball bearing end controls for reduced friction and smooth-running system.
- · Carbo-Cam or Cam-Matic cleats keep weight minimal.

Sleeve bearing control block options

- · Cars feature built-in sleeve bearing control blocks for value-oriented options for installation of 2:1 to 4:1 systems.
- · Pair with sleeve bearing end controls for durability and strength.
- Carbo-Cam or Cam-Matic cleats keep weight minimal.

Materials

For properties see pages 249-250.

Ball bearing

end control

6061-T6 aluminum: Hardcoat-anodized track

Carbo composite: Control blocks

6061-T6 aluminum: Hard Lube-anodized car bodies

Torion: Ball bearings

Sleeve bearing

end control

13 mm Micro: **CB Track & Accessories**

Track

Track comes in low- and high-beam configurations, and is predrilled with holes for mounting fasteners.

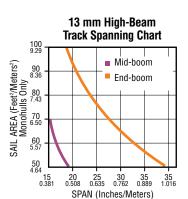
Endstops

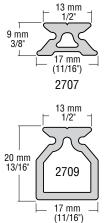
Endstops absorb shock loads. Use the built-in groove to deadend 2:1 control line. Sold in pairs. Fasteners not included.

Splice Links

Splice links join track and keep it aligned during installation.

Curved Track


Harken will bend track to your specifications. See page 123.



LINE-SHEDDING ENDSTOPS

470 © US Sailing Team / Will Ricketson

Part		Leng	ıth	Moun hole sp		Wei	ight		eners H)	Line- shedding	
No.	Description	ft/in	m	in	mm	0Z	g	in	mm	endstop‡	Splice lin
Metric Trac	K										
707.600MM	Low-beam	2'	0.6	1 31/32	50	4.6	129	#8	4	2706	2711
2707.1M	Low-beam	3' 3"	1	1 31/32	50	7.6	214	#8	4	2706	2711
2707.1.2M	Low-beam	3' 11"	1.2	1 31/32	50	9	257	#8	4	2706	2711
2707.2M	Low-beam	6' 7"	2	1 31/32	50	15.1	429	#8	4	2706	2711
2707.2.5M	Low-beam	8' 2"	2.5	1 31/32	50	18.9	536	#8	4	2706	2711
2709.1M	High-beam	3' 3"	1	3 15/16	100	13.2	375	#8	4	2710	
2709.1.2M	High-beam	3' 11"	1.2	3 15/16	100	15.8	449	#8	4	2710	
2709.2M	High-beam	6' 7"	2	3 15/16	100	26.4	749	#8	4	2710	

Track bending

HAUN DUIL	uiiig	
	Minimu	m radius
	Horizoni	tal bend*
Track	in	m
2707	60	1.52
2709	60	1.52

^{*}Horizontal only. Contact Harken Tech Service for vertical bends

	Fastener ho from tra	
Track	in	mm
2707	1	25
2709	1 15/16	50

13 mm Micro: CB Cars

Harken Micro CB traveler cars are used on small dinghies and catamarans.

About CB traveler cars: see feature pages at beginning of this section.

E-Scow, 2015 Blue Chip Regatta

Loop cars matched with 29 or 40 mm Carbo T2 blocks attached with high-tech line provide the ultimate lightweight, low-profile system.

Pivoting shackle cars have low pivot points to handle nonvertical loads.

16 mm control blocks spin on stainless steel balls that roll freely under high loads. The step-down design keeps the controls low and clear of the mainsheet block.

CAR CONTROLS

Cars

CARS

Part		Length W			lth		body ight	Wei	ght	Maxi workin	mum ig load	Breaking load	
No.	Description	in	mm	in	mm	in	mm	0Z	g	lb	kg	lb	kg
2701	Pivoting shackle/control blocks	3 7/16	87	1 9/16	40	3/4	19	2.56	73	310	140	1500	680
2703	Loop	2 3/16	56	1 9/16	40	3/4	19	1.6	45	310	140	1500	680
2700	Pivoting shackle	2 3/16	56	1 9/16	40	3/4	19	1.76	50	310	140	1500	680
2702	Pivoting shackle/tangs	2 3/8	61	1 9/16	40	3/4	19	2.08	59	310	140	1500	680
2767	Athwartships loop	2 3/16	56	1 9/16	40	3/4	19	1.48	42	310	140	1500	680

See page 271 for replacement balls.

Car Controls

Part		She	eave Ø	Len	gth	Wei	ght	Max	line J		mum ng load		iking ad	
No.	Description	in	mm	in	mm	OZ	g	in	mm	lb	kg	lb	kg	Purchase
2704	Control block (pair)	5/8	16	1 5/16	33	0.39	11	7/32	5	250	113	750	339	2:1
2705	Control tang (pair)			13/16	21	0.11	3			250	113	750	339	1:1

22 mm Small Boat: CB Track & Accessories

Variable Hole Spacing Track

CB (Captive Ball) high-beam variable hole spacing track is used to span cockpits or other unsupported areas. Track features internal slide bolts, allowing new track to be installed without drilling additional holes.

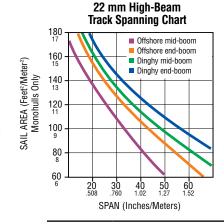
High-Beam Drilled Track

374 and 2725 high-beam track is predrilled with holes for mounting fasteners.

Low-Beam Track

Low-beam track is available with or without pinstop holes.

Endstops/Trim Caps

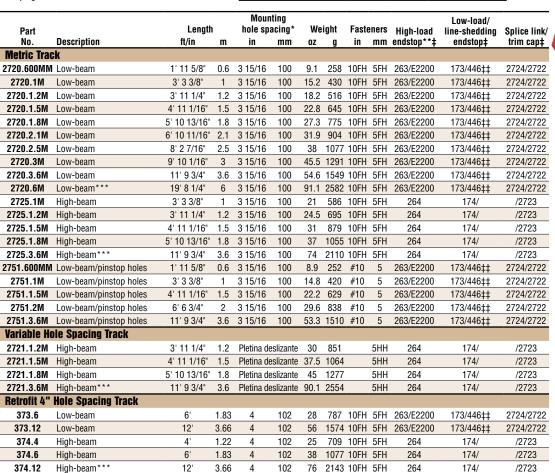

When end controls are not used, add endstops to absorb shock loads. When end control assemblies are used, trim caps finish track ends. Sold in pairs. Fasteners not included.

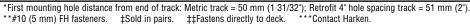
Splice Links

Splice links join track and keep it aligned during installation.

Curved Track

Harken will bend track to your specifications. See page 127.




Fastener hole distance from track end

Track	in	mm
Metric	1 15/16	50
Retrofit	2	51

Track Bending

		Minimun	n radius	
	Horizor	ntal bend	Vertic	al bend
Cars	in	m	in	m
2726 - 2734, 2744 - 2745	42	1.07	65	1.65
2735 - 2738, 2746, 2735.NW	80	2.03	94	2.38
2726.NW, 2727.NW, 2754.NW	42	1.07	42	1.07

374/2725

446

22 mm Small Boat: **CB Cars**

Small Boat CB traveler cars fit dinghies, keelboats, beachcats, and offshore boats to 8 m (27').

About CB traveler cars: see feature pages at beginning of this section.

2736

Loop cars matched with 29 or 40 mm Carbo T2 blocks attached with high-tech line provide the ultimate lightweight, low-profile system.

Blocks attach directly to the toggle for a low-profile, compact system.

Pivoting shackle and toggle cars have low pivot points to handle nonvertical loads.

Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.

Part		Len	ath	Wio	ith	Car I Hei	,	We	iaht	Main: blo pir	ck	Contro	l block	Maxi workin			aking ad
No.	Description	in	mm	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb.	kg
382	High-load/radial/shackle‡	4 1/8	105	2 1/4	57	15/16	24	6.2	177					1250	567	2500	1134
2726*	Low-load/pivoting shackle**	2 7/8	73	2 1/4	57	15/16	24	4.6	132					500	227	2500	1134
2727*	Pivoting shackle	2 7/8	73	2 1/4	57	15/16	24	4.6	132					850	386	2500	1134
2728*	Low-load/fixed sheaves/eyestrap**	2 7/8	73	2 1/4	57	15/16	24	5.6	159					500	227	2500	1134
2729	Fixed sheaves/eyestrap	2 7/8	73	2 1/4	57	15/16	24	5.6	159					850	386	2500	1134
2730	Low-load/stand-up toggle**	2 7/8	73	2 1/4	57	15/16	24	5.1	145	3/16	5	5/32	4	500	227	2500	1134
2731	Stand-up toggle	2 7/8	73	2 1/4	57	15/16	24	5.1	145	3/16	5	5/32	4	850	386	2500	1134
2732	Low-load/loop**	2 7/8	73	2 1/4	57	15/16	24	4	113					500	227	2500	1134
2733	Loop	2 7/8	73	2 1/4	57	15/16	24	4	113					850	386	2500	1134
2734	Fixed sheaves/adjustable arms/365 Carbo-Cam	6 3/4	171	3 1/8	80	15/16	24	14.4	422					850	386	2500	1134
2734HL	. High-load/fixed sheaves/adjustable arms/365 Carbo-Cam	6 3/4	171	3 1/8	80	15/16	24	23.4	664					1250	567	2500	1134
2735*	High-load/pivoting toggle	4 1/8	105	2 1/4	57	15/16	24	6.7	191	1/4	6	5/32	4	1250	567	2500	1134
2736*	High-load/fixed sheaves/eyestrap	4 1/8	105	2 1/4	57	15/16	24	7.0	200					1250	567	2500	1134
2753	Low-load/pivoting shackle/control tangs**	2 7/8	73	2 1/4	57	15/16	24	5.3	150			3/16	5	500	227	2500	1134
2754*	Pivoting shackle/control tangs	2 7/8	73	2 1/4	57	15/16	24	5.3	150			3/16	5	850	386	2500	1134
2756	Pivoting sheaves/471 Carbo-Cam	2 7/8	73	2 1/4	57	15/16	24	9.84	279					850	386	2500	1134
2757*	High-load/pivoting sheaves/365 Carbo-Cam/eyestrap	4 1/8	105	2 1/4	57	15/16	24	14.2	401					1250	567	2500	1134
2765	High-load/pivoting sheaves/eyestrap	4 1/8	105	2 1/4	57	15/16	24	9.6	272					1250	567	2500	1134
2766	High-load/pivoting sheaves/swivel/150 Cam-Matic	4 1/8	105	6 1/8	156	15/16	24	22.2	630					1250	567	2500	1134
2768	Athwartships loop	2 7/8	73	2 1/4	57	15/16	24	3.7	104					850	386	2500	1134

2765

^{*}Available as a non-CB car on a car loader to run on a non-CB style track supplied before 2002. Add .NW to end of part number.

^{**}Small Boat low-load cars with a 227 kg (500 lb) maximum working load use Delrin® balls. See page 271 for replacement balls. ‡For horizontal curved track only—600–800 mm (24"–40") radius. This car cannot be modified to run on old-style track made before 2003.

22 mm Small Boat: End Controls

About Carbo ball bearing or ESP sleeve bearing end controls: see feature pages at beginning of this section.

Carbo ball bearing end controls have an integrated bar for deadending control line.

Assemblies secure to track, eliminating additional holes.

Tough one-piece bases and cam arms are machined from a single piece of aluminum.

Boomerang², Tofinou 8, 8 m (26.25'), Chantier Naval Latitude 46, naval architect: Joubert / Nivelt © Chantier Naval Latitude 46

ESP SLEEVE BEARING END CONTROLS

CARBO BALL BEARING END CONTROLS

Part		She		Len	gth	Wid	dth	Wei	•	Max		Height tra		Maxi workir		Brea loa	•	
No.	Description	in	mm	in	mm	in	mm		g	in	mm	in	mm	lb	kg	lb	kg	Purchase
Carbo	Ball Bearing End Controls																	
2740	Single sheave (pair)	1 1/8	29	3 7/16	87	1 3/8	35	8	228	5/16	8	1 1/32	26	300	136	600	272	2:1
2741	Single sheave/471 Carbo-Cam (pair)	1 1/8	29	3 7/16	87	3 1/8	80	10.8	306	1/4	6	1 1/16	28	300	136	600	272	2:1
2742	Double sheave (pair)	1 1/8	29	3 7/16	87	1 3/8	35	10.3	292	5/16	8	1 5/8	41	600	272	1200	544	3:1 / 4:1
2743	Double sheave/471 Carbo-Cam (pair)	1 1/8	29	3 7/16	87	3 1/8	80	13	370	1/4	6	1 5/8	41	600	272	1200	544	3:1 / 4:1
2755	Pinstop*			1 5/8	42	1 3/8	35	1.6**	45**			13/16	21					
ESP S	Sleeve Bearing End Controls																	
E2230	Single sheave/deadend (pair)	1	25	3 1/2	89	1 1/2	38	4.4	126	5/16	8	1	25	600	272	1200	544	1:1 / 2:1
E2250	Double sheave/deadend (pair)	1	25	3 1/2	89	1 1/2	38	5	142	5/16	8	1 5/8	41	600	272	1200	544	3:1 / 4:1

^{*}Use with 2751 Small Boat pinstop track. **Weight each.

Use the 384 traveler block with the 382 radial traveler car to configure a radial vang. Do not use as mainsheet traveler.

22 mm Small Boat: **Car Accessories**

Accessories

The 384 traveler block features high-load composite bearings to handle wire and high-strength line.

Stand-up toggles hold blocks upright on travelers. Control tangs allow attachment of control blocks.

Refer to stand-up toggles chart for mainsheet block compatibility. See purchase selection guide for control blocks.

Replacement Traveler Kits

Replacement traveler kits are the easiest way to restore modern traveler function. Kits come in two purchase options with prematched parts for easy retrofits.

ACCESSORIES Accessories

AUUU.	3301103															
Part			eave Ø	Len	gth	Wid	ith		ight air)		c line Ø	Maxi workin			aking ad	
No.	Description	in	mm	in	mm	in	mm	0Z	g	in	mm	lb	kg	lb	kg	Purchase
175	Coupler			3 11/16	94	2 3/16	56	4.5**	128**			1500	680	2500	1134	
384	Wire high-load vang block*	2	51	2 3/4	70			3.3**	93**	1/4	6	1250	567	2500	1134	
2749	Control tangs (pair)			7/8	23			0.8	21			600	272	1200	544	2:1
2759	Padeye/fits 22 mm cars with sheaves			2 1/4	56	3/4	18	1.3**	38**							

*Fits 382 for radial vang system. Do not use with controls if radius is tight. Max wire $\emptyset = 5$ mm (3/16"). **Weight each.

Stand-Up Toggles

Part		Mainsheet b	olock pin Ø	Con block		Heig	ght	Weig	jht	Maxii workin		
No.	Description	in	mm	in	mm	in	mm	OZ	g	lb	kg	Accepts mainsheet blocks
2747	Small stand-up toggle/control tangs	3/16	5	5/32	4	1 13/16	45	1.5	43	1250	567	40 mm double & triple Carbo, 57 mm single & fiddle Carbo
2748	Large stand-up toggle/control tangs	1/4	6	5/32	4	2	51	2	48	1250	567	57 mm double & triple Carbo

Replacement Traveler Kits

			Boat I	ength			Max mair	ısail area		Maxi	mum		
Part		Mid-	boom	End-	boom	Mid-	boom	End-	boom	workin	g load		
No.	Description	ft	m	ft	m	ft²	m²	ft²	m²	lb	kg	Purchase	Includes
2763	22 mm traveler kit/2:1	18 - 22	5.5 - 6.7	21 - 25	6.4 - 7.6	125	11.5	150	14	850	386	2:1	(1) 2729, (1 pair) 2741
2764	22 mm traveler kit/3:1	21 - 26	6.4 - 7.9	24 - 29	7.3 - 8.8	150	14	190	17.5	1250	567	3:1	(1) 2735, (2) 348, (1 pair) 2743

22 mm Small Boat: **Purchase Selection Guide**

			Control block
Purchase	Car	End control	(cars with stand-up toggles or control tangs only)
2:1	2728 / 2729 / 2730 / 2731 / 2734 / 2753 / 2754 / 2735 / 2736 / 2737 / 2738	2740 / 2741	340 / 348 / 2608 / 2636 / 2650 / 2149
3:1	2730 / 2731 / 2753 / 2754 / 2735	2742 / 2743	340* / 341 / 348* / 2609 / 2636* / 2637 / 2650*
4:1	2730 / 2731 / 2753 / 2754 / 2735	2742 / 2743	342 / 2638 / 2642

^{*}Deadend line through center of sheave

22 mm Small Boat: **Genoa Lead Cars**

CB adjustable genoa lead cars feature recirculating Torlon® ball bearings for easy adjustment under full sheet loads.

Stainless steel sheave carriers pivot 60 degrees to accommodate changing lead angles. Wide sheave holds two sheets during sail changes.

Cars feature car-mounted, sleeve-bearing control blocks for strength and durability. All CB genoa lead cars are compatible with Harken end controls. Kits are available for purchase upgrades up to 4:1.

CB Adjustable Cars

Sheave carriers feature high-performance sheaves with ball bearings to handle radial loads, while sideload balls handle thrust loads for easy trimming and fore-and-aft adjustment.

ESP CB Adjustable & Pinstop Cars

Sheave carriers feature ESP sleeve bearing sheaves.

Use pinstop cars in applications where lead positions change infrequently.

Pinstop and ball bearing genoa lead cars both run on ball bearing track, allowing system upgrades without changing track.

Torlon is a registered trademark of Solvay Advanced Polymers L.L.C.

Flexible, lightweight, lashing attachment allows block to articulate freely on 2750 jib car.

ENOA LEADS

WHY DO I NEED ADJUSTABLE **GENOA LEAD CARS?**

If you are a cruiser, ball bearing genoa lead cars with multipart purchases allow you to quickly adjust loaded headsail leads from the cockpit. If you race, ball bearing lead cars let you quickly change your sheeting angle, adjusting the twist to optimize sail shape.

For sheet-loading formulas see page 275

	End control selection	guide
Purchase	Car	End Control
2:1	G2227B/G222B	2740
4:1	G2247B/G224B	2742

Part		She		Len	gth	Wid	ith	Wei	ght	Maxi workin		Brea lo:	iking ad	
No.	Description	in	mm	in	mm	in	mm	0Z	g	lb	kg	lb	kg	Track
CB Adjustable														
G2227B*	Small Boat/sheave	1 3/4	45	4 1/8	105	2 1/4	57	13.71	389	1250	567	2500	1134	22 mm
G2247B	Small Boat/2 sheaves	1 3/4	45	4 1/8	105	2 1/4	57	14.3	405	1250	567	2500	1134	22 mm
ESP CB Adjusta	ble													
G222B	Small Boat/sheave	1 1/2	38	4 1/8	105	2 1/4	57	12.87	365	1250	567	2500	1134	22 mm
G224B	Small Boat/2 sheaves	1 1/2	38	4 1/8	105	2 1/4	57	13.33	378	1250	567	2500	1134	22 mm
ESP Pinstop														
2750	Small Boat jib lead/pinstop			3 7/16	88	1 5/16	33	4.6	130	1100	500	2200	1000	2751
2750/2151/369	Small Boat/pinstop/loop block/stand-up	2 1/4	57	3 3/8	84	1 5/16	33	6.9	195	792	359	2200	1000	2751
G226S	Small Boat/pinstop	1 1/2	38	3 3/4	95	1 3/8	35	9.59	272	1250	567	2500	1134	2751

^{*}Available as a non-CB car on a car loader to run on a non-CB style track supplied before 2002. Add .NW to end of part number. See page 272 for replacement balls.

27 mm Midrange: CB Track & Accessories

Variable Hole Spacing Track

CB (Captive Ball) high-beam variable hole spacing track is used to span cockpits or other unsupported areas. Track features internal slide bolts, allowing new track to be installed without drilling additional holes.

Low-Beam Track

Low-beam track is available with one, two, or three pinstop holes between fasteners or without pinstop holes.

Endstops/Trim Caps

When end controls are not used, add endstops to absorb shock loads. When end control assemblies are used, trim caps finish track ends. Sold in pairs. Fasteners not included.

Splice Links

Splice links join track and keep it aligned during installation.

Track Risers

Use 1849 risers for mid-boom travelers that must clear companionway hatches. Risers fit most cabintops and articulate for use with either straight or curved track. Sold in pairs.

Curved Track

Harken will bend track to your specifications. See page 127.

Track bending

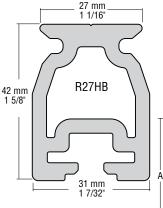
		Minimun	ı radiu:	3
	Horizoi	ntal bend	Vertic	al bend
Car	ft	m	ft	m
T27xxB, T2701B.NW, T27x4B.HL, 1635	8	2.44	8	2.44
T27xxB.HL, T2701B.HL.NW, 1636	9	2.73	9	2.73

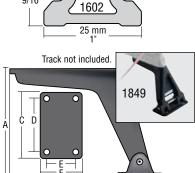
27 mm High-Beam Track Spanning Chart 350 330 325 Bind-boom 300 28 End-boom 275 275 28 200 19 175 16 30 40 50 60 70 760 1.02 1.27 1.52 1.78 SPAN (Inches/Meters)

R27

R27HB

14 mm


9/16

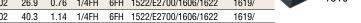

Bolt slides

included.

Fasteners not

included.

Part			Wei	ight	ŀ	١	В		C		D		E			F
No.	Description	Fits	0Z	g	in	$\boldsymbol{m}\boldsymbol{m}$	in	mm	in	mm	in	mm	in	mm	in	mm
1849	Track riser (pair)	R27HB, R32HB	131.2	3720	6 7/8	175	9 9/16	243	6 11/16	170	4 5/16	110	1 3/4	45	3	76


1621 1622

1522

E2700

1523

1849	Track riser (pair) R27HB, R32	2HB 131.2 3/20	ו ט	8 1/5 9 9/10	243 0	11/10	1/0 4	טו /כ	110 13/4 45 3	70	_
				Mounting							-
Part	l .	Length		hole spacing'	We	ight	Faste	ners	Endstop**/	Splice link/	
No.	Description	ft/in	m	in mm	0Z	kg	in	mm	trim cap**	track riser	_
Metric 1	Track										
R27.1M	Low-beam/pinstop holes	3' 3 3/8"	1	3 15/16 100	22	0.62	5/16FH	8FH	1522/E2700/1606/1621	1619/	
R27.1MH	HDP Low-beam/3 pinstop holes	3' 3 3/8"	1	3 15/16 100	21.3	0.61	5/16FH	8FH	1522/E2700/1606/1621	1619/	
R27.1.2I	M Low-beam/pinstop holes	3' 11 1/4"	1.2	3 15/16 100	26.5	0.75	5/16FH	8FH	1522/E2700/1606/1621	1619/	٠,
R27.1.5	M Low-beam/pinstop holes	4' 11 1/16"	1.5	3 15/16 100	33	0.93	5/16FH	8FH	1522/E2700/1606/1621	1619/	1
R27.1.8I	M Low-beam/pinstop holes	5' 10 13/16"	1.8	3 15/16 100	39	1.11	5/16FH	8FH	1522/E2700/1606/1621	1619/	_
R27.2M	Low-beam/pinstop holes	6' 6 3/4"	2	3 15/16 100	44	1.24	5/16FH	8FH	1522/E2700/1606/1621	1619/	Ī
R27.2.5I	M Low-beam/pinstop holes	8' 2 7/16"	2.5	3 15/16 100	55	1.56	5/16FH	8FH	1522/E2700/1606/1621	1619/	_
R27.3M	Low-beam/pinstop holes	9' 10 1/16"	3	3 15/16 100	66	1.87	5/16FH	8FH	1522/E2700/1606/1621	1619/	
R27.3.6	M Low-beam/pinstop holes	11' 9 3/4"	3.6	3 15/16 100	79	2.24	5/16FH	8FH	1522/E2700/1606/1621	1619/	-
R27.6M	Low-beam/pinstop holes	19' 8 1/4"	6	3 15/16 100	132	3.74	5/16FH	8FH	1522/E2700/1606/1621	1619/	
Variable	e Hole Spacing Track										Ī
R27HB.1	M High-beam	3' 3 3/8"	1	Slide bolt	57	1.63	1/4HH	6HH	1523/1622	/1849	Ξ.
R27HB.1	.5M High-beam	4' 11 1/16"	1.5	Slide bolt	86	2.45	1/4HH	6HH	1523/1622	/1849	Ι/
R27HB.1	.8M High-beam	5' 10 7/8"	1.8	Slide bolt	104	2.93	1/4HH	6HH	1523/1622	/1849	- 1
R27HB.2	2.5M High-beam	8' 2 7/16"	2.5	Slide bolt	144	4.08	1/4HH	6HH	1523/1622	/1849	I
R27HB.3	3.6M High-beam***	11' 9 3/4"	3.6	Slide bolt	207	5.87	1/4HH	6HH	1523/1622	/1849	_
Retrofit	4" Hole Spacing Track										
1602.8	Low-beam	8'	2.44	4 102	56	1.59	1/4FH	6FH	1522/E2700/1606/1621	1619/	
1602.12	Low-beam	12'	3.66	4 102	83	2.35	1/4FH	6FH	1522/E2700/1606/1621	1619/	-
1605.4	Low-beam/2 pinstop holes	4'	1.22	4 102	26.9	0.76	1/4FH	6FH	1522/E2700/1606/1622	1619/	1

^{*}First mounting hole distance from end of track: Metric track = 50 mm (1 31/32"); Retrofit 4" hole spacing track = 51 mm (2").

Low-beam/2 pinstop holes

^{**}Sold in pairs. Trim caps not used with E27 end controls. ***Contact Harken.

27 mm Midrange: **CB** Cars

Midrange CB traveler cars are built to handle high loads on boats from 8 m to 10 m (27' to 34').

About CB traveler cars: see feature pages at beginning of this section.

T2703B

T2705B and T2705B.HL lightweight soft-attachment cars provide a variety of rigging solutions— athwartship jib or mainsheet systems, for example. Lash Carbo T2 blocks to the car for traveler control.

T2705B.HL

Carbo ball bearing controls

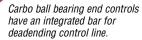
For a ball bearing system, use separate Carbo control blocks mounted on the stand-up toggle control tangs to add up to 4:1 purchase. See page 108.

T2701B.HL T2701B

T2705B

ESP sleeve bearing controls

For an ESP sleeve-bearing system, use a T27KIT control block kit mounted on the car to add up to 4:1 purchase. See page 108.


Complete selection of cars with built-in car control blocks is available online: www.harken.com/27mm-cars

Part		Len	gth	Wid	ith	Hei	ght	Weig	ght	Mains block p			l block ı Ø	Maxi workin			king ad
No.	Description	in	mm	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
27 mm N	lidrange Standard																
T2701B*	Car/shackle	4 1/4	108	2 3/4	70	2	50	11.04	313					1800	816	5000	2268
T2703B	Car/stand-up toggle/ears	4 1/4	108	2 3/4	70	3 1/8	80	14.4	408	1/4, 5/16	6, 8	3/16	5	1800	816	5000	2268
T2705B	Car/soft attachment	4 1/4	108	2 3/4	70	1 1/2	38	10.06	285					1800	816	5000	2268
T2721B	Car/shackle/2:1 ESP controls	4 1/4	108	3	76	2	50	11.04	313					1800	816	5000	2268
T2731B	Car/shackle/3:1 ESP controls	4 1/4	108	3 7/32	81	2	50	11.04	313					1800	816	5000	2268
T2741B	Car/shackle/4:1 ESP controls	4 1/4	108	3 3/8	86	2	50	11.04	313					1800	816	5000	2268
T2751B	Car/shackle/5:1 ESP controls	4 1/4	108	3 9/16	91	2	50	12.7	360					1800	816	5000	2268
27 mm N	lidrange High-Load																
T2701B.HL	* High-load car/shackle	5 3/16	132	2 3/4	70	2	50	12.48	354					2300	1043	5000	2268
T2703B.HL	. High-load car/stand-up toggle/ears	5 3/16	132	2 3/4	70	3 1/8	80	15.84	449	1/4, 5/16	6, 8	3/16	5	2300	1043	5000	2268
T2704B.HL	. 2 cars/2 stand-up toggles	8 3/4	223	2 3/4	70	3 1/8	80	25.6	726	1/4, 5/16	6, 8			3600	1633	7200	3266
T2705B.HL	. High-load car/soft attachment	5 3/16	132	2 3/4	70	1 1/2	38	12.28	348					2300	1043	5000	2268
T2721B.HL	. High-load car/shackle/2:1 ESP controls	5 3/16	132	3	76	2	50	12.48	354					2300	1043	5000	2268
T2731B.HL	. High-load car/shackle/3:1 ESP controls	5 3/16	132	3 7/32	81	2	50	12.48	354					2300	1043	5000	2268
T2741B.HL	. High-load car/shackle/4:1 ESP controls	5 3/16	132	3 3/8	86	2	50	12.48	354					2300	1043	5000	2268

27 mm Midrange: End Controls

About Carbo ball bearing or ESP sleeve bearing end controls: see feature pages at beginning of this section.

Assemblies secure to track, eliminating additional holes.

Tough one-piece bases and cam arms are machined from a single piece of aluminum.

E2756

1652

Use E2750HB double-sheave ESP end controls for cabintop travelers where lines lead to the aft edge of the cabintop.

Contact Harken to order special length track with mounting holes for E2750HB end controls.

ESP SLEEVE BEARING END CONTROLS

Fasteners not included

Part		Shea Ø	ive	Leng	ıth	Widt	h	Wei (pa	•.		line Ø	Height tra		Maxi workin		Breal loa	•	
No.	Description	in	mm	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg	Purchase
Carbo	Ball Bearing End Controls																	
1631	Single sheave (pair)*	1 9/16	40	4 1/2	114	1 15/16	49	20	574	3/8	10	1 5/16	33	350	159	875	397	2:1 / 3:1
1632	Double sheave (pair)*	1 9/16	40	4 1/2	114	1 15/16	49	26	730	3/8	10	2	50	700	318	1750	794	3:1 / 4:1
1633	Double sheave/365 Carbo-Cam (pair)*	1 9/16	40	4 1/2	114	3 15/16	100	36	1020	3/8	10	2	50	600	272	1500	680	3:1 / 4:1
1652	Self-tacking jib controls (pair)***	2	51	4 3/16	106	2 1/4	57	20.4	578	1/2	12	2 5/16	59	610	277	1200	544	1:1
ESP S	leeve Bearing End Controls																	
E2730	Single sheave/deadend (pair)	1 3/8	35	4 13/16	122	1 13/16	45	19.54	554	3/8	10	1 7/16	36	1800	816	3600	1633	1:1 / 2:1
E2750HI	High-beam double sheave (pair)‡	1 9/16	40	4 1/4	108	1 9/16	40	23.4	662	3/8	10	1	25	600	272	1200	544	3:1 / 4:1
E2750	Double sheave/deadend (pair)	1 3/8	35	4 13/16	122	1 13/16	45	24.2	686	3/8	10	2 1/4	56	1800	816	3600	1633	3:1 / 4:1
E2756	Double sheave/deadend/365 Carbo-Cam (pair)‡‡	1 3/8	35	3 3/4	95	3 13/16	96	23.4	1278	3/8	10	2 1/4	56	600	272	1500	680	4:1
Pinsto	pps																	
1642	Pinstop			2 5/16	59	1 15/16	49	4.8**	136**			1 5/16	33					
1649	Pinstop/shackle			3 1/2	89	1 15/16	49	9.95**	282**					1984	900	3968	1800	

27 mm Midrange: **Car Accessories**

Control Block Kits

Kits are available for Midrange cars to add sleeve-bearing control systems for up to 4:1 purchase. Combine with sleeve-bearing end controls.

Stand-Up Toggles

Stand-up toggles hold blocks upright on travelers. Control tangs allow attachment of ball bearing Carbo control blocks.

Refer to stand-up toggles chart for mainsheet block compatibility. See purchase selection guide for control blocks.

Replacement Traveler Kits

Replacement traveler kits are the easiest way to restore modern traveler function. Kits come in two purchase options with prematched parts for easy retrofits.

See page 20-21

1643

T27KIT T32KIT

1655 REPLACEMENT TRAVELER KITS

Control Block Kits

0011410	. Dioon into	
Part No.	Description	Includes
T27KIT	Purchase upgrade kit **	(4) 25 mm control blocks, (2) Small Boat deadends, (8) M5 fasteners
T32KIT	Purchase upgrade kit*‡	(4) 35 mm control blocks, (2) Midrange, Big Boat deadends, (8) M6 fasteners

*Use with G27 genoa lead cars. **Fits 25 mm sheave Ø. ± Fits 35 mm sheave Ø

Replacement Traveler Kits

		Boat length				Max maii	nsail area		Maxi	mum		
Part	Mid-boom End			boom	Mid	-boom	End-	boom	workin	g load		
No. Description	ft	m	ft	m	ft²	m²	ft²	m²	lb	kg	Purchase	Includes
1654 27 mm traveler kit/3:1	26 - 28	7.9 - 8.5	28 - 30	8.5 - 9.1	190	17.5	220	20.5	1800	816	3:1	(1) T2731B, (1 pair) E2756
1655 27 mm traveler kit/4:1	28 - 31	8.5 - 9.5	31 - 35	9.5 - 10.7	215	20	260	24	1800	816	4:1	(1) T2741B, (1 pair) E2756

Stand-Up Toggles

Part		Mainsl block p		Con block		Hei	ght		mum ng load	
No.	Description	in	mm	in	mm	in	mm	lb	kg	Accepts mainsheet blocks
1567	Stand-up toggle	1/4, 5/16	6, 8			2 5/16	59	2500	1134	45 & 60 mm Element singles, doubles, triples; 75 mm
1643	Stand-up toggle/control tangs	1/4, 5/16	6, 8	3/16	5	2 5/16	59	2500	1134	Carbo singles, doubles, triples; 3" Small Boat single, fiddle, Midrange blocks; 57 mm single Black Magic

27 mm Midrange: **Purchase Selection Guide**

Purchase	Car	End control	Control block on car
2:1 Ball bearing	T2701B	1631	1643 with 2650
2:1 ESP	T2701B	E2730	T27KIT
3:1 Ball bearing	T2701B	1632, 1633	1643 with 2650*
3:1 ESP	T2701B	E2750, E2756	T27KIT
4:1 Ball bearing	T2701B	1632, 1633	1643 with 2638
4:1 ESP	T2701B	E2750, E2756	T27KIT

		Control pure	hase recommend	lations	
		Sail	area		
	End-boom	sheeting	Mid-boom	sheeting	
	ft²	m²	ft²	m²	Purchase
-	Under 140	Under 13	Under 125	Under 12	2:1
	140-235	13-22	125-200	12-19	3:1
-	235-275	22-25	200-250	19-23	4:1

^{*}Deadend line through center of sheave.

27 mm Midrange: Genoa Lead Cars

CB adjustable genoa lead cars feature recirculating Torlon® ball bearings for easy adjustment under full sheet loads.

Stainless steel sheave carriers pivot 60 degrees to accommodate changing lead angles. Wide sheave holds two sheets during sail changes.

Cars feature car-mounted, sleeve-bearing control blocks for strength and durability. All CB genoa lead cars are compatible with Harken end controls. Kits are available for purchase upgrades up to 4:1.

CB Adjustable Cars

Sheave carriers feature high-performance sheaves with roller bearings to handle radial loads, while sideload balls handle thrust loads for easy trimming and fore-and-aft adjustment.

ESP CB Adjustable & Pinstop Cars

Sheave carriers feature ESP sleeve-bearing sheaves.

Use pinstop cars in applications where lead positions change infrequently.

Pinstop and ball bearing genoa lead cars both run on ball bearing track, allowing system upgrades without changing track.

Torlon is a registered trademark of Solvay Advanced Polymers L.L.C.

27 mm Midrange: Genoa Lead Cars

N Fun 30, 9.14 m (30'), naval architect: Eugeniusz Ginter © Tomasz Karolski / N Fun Yachting sp zoo

For sheet-loading formulas see page 275.

	End control selection guide	
Purchase	Car	End control
2:1	G272B/G2727B	E2730
3:1	G273B/G273B.HL/G2737B/G2737B.HL	E2750
4:1	G274B/G274B.HL/G2747B/G2747B.HL	E2750

Part		She Ø		Len	gth	Wic	dth	Wei	ght		mum ig load		iking ad	
No.	Description	in	mm	in	mm	in	mm	0Z	g	lb	kg	lb	kg	Trac
CB Adju	stable													
G2727B	Midrange/sheave	2 1/2	64	5 3/16	132	2 3/4	70	27.52	780	2300	1043	5000	2268	R2
G2737B	Midrange/sheave/deadend	2 1/2	64	5 3/16	132	2 3/4	70	28.4	805	2300	1043	5000	2268	R2
G2737B.HL	High-load Midrange/sheave/deadend	2 1/2	64	9 1/8	232	2 3/4	70	39.25	1113	3600	1633	7200	3266	R2
G2747B*	Midrange/2 sheaves	2 1/2	64	5 3/16	132	2 3/4	70	29.76	844	2300	1043	5000	2268	R2
G2747B.HL	LHigh-load Midrange/2 sheaves	2 1/2	64	9 1/8	232	2 3/4	70	40.64	1152	3600	1633	7200	3266	R2
ESP CB	Adjustable													
G272B	Midrange/sheave	2 1/4	57	5 3/16	132	2 3/4	70	23.25	659	2300	1043	5000	2268	R2
G273B	Midrange/sheave/deadend	2 1/4	57	5 3/16	132	2 3/4	70	24.06	682	2300	1043	5000	2268	R
G273B.HL	. High-load Midrange/sheave/deadend	2 1/4	57	9 1/8	232	2 3/4	70	34.6	981	3600	1633	7200	3266	R
G274B	Midrange/2 sheaves	2 1/4	57	5 3/16	132	2 3/4	70	25.22	718	2300	1043	5000	2268	R
G274B.HL	. High-load Midrange/2 sheaves	2 1/4	57	9 1/8	232	2 3/4	70	35.76	1017	3600	1633	7200	3266	R
ESP Pins	stop													
G276S	Midrange/pinstop	2	51	5	127	1 5/8	41	17.92	508	3000	1361	6000	2722	R
G276S.HL	. High-load Midrange/pinstop	2	51	7 1/4	184	1 5/8	41	22.93	650	3600	1633	7200	3266	R
*Available a)	as a non-CB car on a car loader to run on a non-	·CB style tra	ick supp	olied before	2003. /	Add .NW t	o end of	part num	ber.	See pag	ge 272 foi	replacem	nent balls.	

32 mm Big Boat: **CB Track & Accessories**

Variable Hole Spacing Track

CB (Captive Ball) high-beam variable hole spacing track is used to span cockpits or other unsupported areas. Track features internal slide bolts, allowing new track to be installed without drilling additional holes.

Low-Beam Track

Low-beam track is available with one, two, or three pinstop holes between fasteners or without pinstop holes.

Endstops/Trim Caps

When end controls are not used, add endstops to absorb shock loads. When end control assemblies are used, trim caps finish track ends. Sold in pairs. Fasteners not included.

Splice Links

Splice links join track and keep it aligned during installation.

Track Risers

Use 1849 risers for mid-boom travelers that must clear companionway hatches. Risers fit most cabintops and articulate for use with either straight or curved track. Sold in pairs. See page 109.

Curved Track

Harken will bend track to your specifications. See page 127.

Track bending

	Minimum radius									
	Horizontal bend Vertical bend									
Car	ft	m	ft	m						
T32xxB*, T32xxB.NW, 3176, 3177	8	2.44	10	3.05						
T32xxB.HL, T32x4B.HL T32xxB.HL.NW, 3178, 3179	18	5.49	18	5.49						
2 x T32xxB, 2 x T32xxB.NW	8	2.44	10	3.05						
T3204B, T3209B	24	7.32	24	7.32						
*T3204B/T3209B: 7.32 m (24')										

600 SAIL AREA (Feet?/Meters²) Monohulls Only included. R32HB 450 42 400 37 R32 3500 45 60 1.14 1.52 75 1.9 SPAN (Inches/Meters) 3159 32 mm 1 1/4" 32 mm 1 1/4" 19 mm R32 3159 57 mm R32HB 30 mm 1 3/16" Track not 42 mm 1 5/8 3158

32 mm High-Beam **Track Spanning Chart**

650 60

Mid-boom

End-boom

Part		Length	1	Moun hole sp		We	ight	Faste	ners	Endstop**/	Splice link/
No.	Description	ft/in	m	in	mm	OZ	kg	in	mm	trim cap**	track riser‡
Metric Trac	;k										
R32.1M	Low-beam/pinstop holes	3' 3 3/8"	1	3 15/16	100	52	1.47	3/8FH	10FH	548/E3200/3157	3153/
R32.1MHDP	Low-beam/3 pinstop holes	3' 3 3/8"	1	3 15/16	100	33.1	0.94	5/16FH	8FH	548/E3200/3157	3153/
R32.1.5M	Low-beam/pinstop holes	4' 11 1/16"	1.5	3 15/16	100	52	1.47	3/8FH	10FH	548/E3200/3157	3153/
R32.1.8M	Low-beam/pinstop holes	5' 10 13/16"	1.8	3 15/16	100	61.7	1.75	3/8FH	10FH	548/E3200/3157	3153/
R32.2.1M	Low-beam/pinstop holes	6' 10 11/16"	2.1	3 15/16	100	72	2.05	3/8FH	10FH	548/E3200/3157	3153/
R32.2.4M	Low-beam/pinstop holes	7' 10 1/2"	2.4	3 15/16	100	81	2.3	3/8FH	10FH	548/E3200/3157	3153/
R32.3M	Low-beam/pinstop holes	9' 10 1/16"	3	3 15/16	100	103	2.93	3/8FH	10FH	548/E3200/3157	3153/
R32.3.6M	Low-beam/pinstop holes	11' 9 3/4"	3.6	3 15/16	100	124	3.52	3/8FH	10FH	548/E3200/3157	3153/
R32.6M	Low-beam/pinstop holes	19' 8 1/4"	6	3 15/16	100	207	5.87	3/8FH	10FH	548/E3200/3157	3153/
Variable Ho	le Spacing Track										
R32HB.1.5M	High-beam	4' 11 1/16"	1.5	Slide	bolt	167	4.74	5/16HH	8HH	562/3158	/1849
R32HB.1.8M	High-beam	5' 10 7/8"	1.8	Slide	bolt	201	5.69	5/16HH	8HH	562/3158	/1849
R32HB.2.5M	High-beam	8' 2 7/16"	2.5	Slide	bolt	279	7.9	5/16HH	8HH	562/3158	/1849
R32HB.3.6M	High-beam***	11' 9 3/4"	3.6	Slide	bolt	402	11.38	5/16HH	8HH	562/3158	/1849
R32HB.4.5M	High-beam***	14' 9 3/16"	4.5	Slide	bolt	502	14.23	5/16HH	8HH	562/3158	/1849
Retrofit 4"	Hole Spacing Track										
3159.8	Low-beam	8'	2.44	4	102	89	2.48	5/16FH	8FH	548/E3200/3157	3153/
3159.12	Low-beam	12'	3.66	4	102	131	3.71	5/16FH	8FH	548/E3200/3157	3153/
3500.4	Low-beam/2 pinstop holes	4'	1.22	4	102	41.5	1.18	5/16FH	8FH	548/E3200/3157	3153/
3500.6	Low-beam/2 pinstop holes	6'	1.83	4	102	62.2	1.76	5/16FH	8FH	548/E3200/3157	3153/

^{*}First mounting hole distance from end of track: Metric track = 50 mm (1 31/32"); Retrofit 4" hole spacing track = 51 mm (2").

562

548

E3200

Bolt slides

included.

Fasteners not

^{**}Sold in pairs. Trim caps not used with E32 end controls.

‡Track riser 1849 shown on page 105.

32 mm Big Boat: CB Cars

Big Boat CB traveler cars handle high loads on boats from 9.5 m to 15 m (32' to 50') and up to 21 m (70') with coupled cars.

About CB traveler cars: see feature pages at beginning of this section.

T3203B T3203B.HL

T3205B and T3205B.HL lightweight soft-attachment cars provide a variety of rigging solutions—athwartship jib or mainsheet systems, for example. Lash Carbo T2 or Black Magic Loop blocks to the car for traveler control.

For a ball bearing system, use separate Carbo or Black Magic control blocks mounted on the stand-up toggle control tangs to add up to 6:1 purchase. See page 120.

ESP sleeve bearing controls

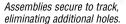
T3201B.HL T3201B

T3209B

For an ESP sleeve-bearing system, use a T32KIT control block kit mounted on the car to add up to 6:1 purchase. See page 120.

Complete selection of cars with builtin car control blocks is available online: www.harken.com/32mm-cars

Part		Len	gth	Wid	th	Hei	ght	Wei	ght	Mains block (Con block			imum ng load		iking ad
No.	Description	in	mm	in	mm	in	mm	0Z	g	in	mm	in	mm	lb	kg	lb	kg
32 mm B	ig Boat Standard																
T3201B*	Car/shackle	5 3/8	136	3 11/32	85	2 5/8	73	20	567					3000	1361	7000	3175
T3203B	Car/stand-up toggle/ears	5 3/8	136	3 11/32	85	3 1/2	89	25.28	717	5/16, 3/8	8, 10	1/4	6	3000	1361	7000	3175
T3204B	Car/2 stand-up toggles	9 1/8	231	3 11/32	85	3 1/2	89	55	1559	5/16, 3/8	8, 10			5000	2268	10000	4536
T3205B	Car/soft attachment	5 3/8	136	3 11/32	85	2	50	20.43	579					3000	1361	7000	3175
T3209B	Car/2 stand-up toggles/ears	9 1/8	231	3 11/32	85	3 1/2	89	56.44	1600	5/16, 3/8	8, 10	1/4	6	5000	2268	10000	4536
T3221B	Car/shackle/2:1 ESP controls	5 3/8	136	3 5/8	98	2 5/8	73	20	567					3000	1361	7000	3175
T3231B	Car/shackle/3:1 ESP controls	5 3/8	136	4	101	2 5/8	73	20	567					3000	1361	7000	3175
T3241B	Car/shackle/4:1 ESP controls	5 3/8	136	4 3/8	111	3 1/2	89	20	567					3000	1361	7000	3175
32 mm B	ig Boat High-Load																
T3201B.HL	* High-load car/shackle	7 7/16	188	3 11/32	85	2 5/8	73	24	680					4500	2041	9000	4081
T3203B.HL	L High-load car/stand-up toggle/ears	7 7/16	188	3 11/32	85	3 1/2	89	29.44	835	5/16, 3/8	8, 10	1/4	6	4500	2041	9000	4081
T3204B.HL	L 2 high-load cars/2 stand-up toggles	15	381	3 11/32	85	3 1/2	89	79	2239	5/16, 3/8	8, 10			9000	4082	18000	8163
T3205B.HL	L High-load car/soft attachment	7 7/16	188	3 11/32	85	2	50	29.42	834					4500	2041	9000	4081
T3209B.HL	L 2 high-load cars/2 stand-up toggles/ears	15	381	3 11/32	85	3 1/2	89	80.25	2275	5/16, 3/8	8, 10	1/4	6	9000	4082	18000	8163
T3221B.HL	L High-load car/shackle/2:1 ESP controls	7 7/16	188	3 5/8	98	2 5/8	73	24	680					4500	2041	9000	4081
T3231B.HL	L High-load car/shackle/3:1 ESP controls	7 7/16	188	4	101	2 5/8	73	24	680					4500	2041	9000	4081
T3241B.HL	L High-load car/shackle/4:1 ESP controls	7 7/16	188	4 3/8	111	3 1/2	89	24	680					4500	2041	9000	4081


32 mm Big Boat: End Controls

About Carbo ball bearing or ESP sleeve bearing end controls: see feature pages at beginning of this section.

Carbo ball bearing end controls have an integrated bar for deadending control line.

Tough one-piece bases and cam arms are machined from a single piece of aluminum.

CARBO BALL BEARING END CONTROLS

3173 and 3174 high-load controls allow 2:1 to 6:1 purchases on offshore boats with mainsails over 37 m² (400 ft²). Controls feature 57 mm Black Magic Big Boat ball/roller sheaves and high-load aluminum sideplates.

Use E3250HB double-sheave ESP end controls for cabintop travelers where lines lead to the aft edge of the cabintop.

Contact Harken to order special length track with mounting holes for E3250HB end controls.

HIGH-LOAD END CONTROLS

ESP SLEEVE BEARING END CONTROLS

End Controls: 32 mm Big Boat

TECH TIP

27 mm Midrange and 32 mm Big Boat kits are available for purchase upgrades from 1:1 to 4:1.

Amel 50, 15.24 m (50'), Berret-Racoupeau Yacht Design @ Robin Christol

	Control F	Purchase Recomm	endations	
	Sai	l area		
End-boom	sheeting	Mid-boom	sheeting	
ft²	m²	ft²	m²	Purchase
Under 260	Under 24	Under 240	Under 22	3:1
260-450	24-42	240-400	22-37	4:1
450-600	42-56	400-550	37-51	6:1
Over 600	Over 56	Over 550	Over 51	2:1 w/winch

Part		Sheav	/e	Length	Wid	th		ight air)	Max		Heig above t		Maxi		Brea		-
No.	Description	in	mm	in mn		mm		g	_	mm		mm	lb	kg	lb		Purchase
Carbo	Ball Bearing End Controls															Ť	
3168	Single sheave (pair)***	1 9/16	40	4 13/16 122	2 1/4	57	27	767	3/8	10	1 7/16	36	450	204	1600	725	1:1 / 2:1
3169	Double sheave (pair)***	1 9/16	40	4 13/16 122	2 1/4	57	31	887	3/8	10	2	51	900	408	2300	1040	3:1 / 4:1
3170	Double sheave/150 Cam-Matic (pair)***	1 9/16	40	4 13/16 122	2 4 1/8	104	39	1116	3/8	10	2	51	900	408	2300	1040	3:1 / 4:1
3197	Triple sheave/deadend (pair)	1 3/8, 2 1/4	35, 57	6 3/4 17	2 1/4	57	32.4	918	3/8	10	2 1/2	64	1500	680	2500	1134	5:1 / 6:1
High-l	oad End Controls																
3173	High-load single (pair)	2 1/4	57	6 7/16 164	2 1/4	57	35	981	7/16	12	1 1/16	28	2500	1134	5000	2268	1:1 / 2:1
3174	High-load double (pair)	2 1/4	57	6 7/16 164	2 1/4	57	41	1169	7/16	12	1 15/16	49	1650	750	3300	1500	3:1 / 4:1
Pinsto	ps																
3212	Adjustable pinstop			2 9/16 65	2 1/4	57	8**	227**			1 5/16	33					
3213	Adjustable pinstop/shackle			4 7/16 113	3 2 1/4	57	15.2**	431**			1 27/32	46	3500	1588			
3304	Adjustable pinstop			2 1/2 64	2 1/4	57	10.3**	294**			1 3/16	30					
ESP S	leeve Bearing End Controls																
E3230	Single sheave/deadend (pair)	1 3/8	35	4 13/16 122	2 1 13/16	3 45	19.54	554	3/8	10	1 7/16	36	1800	816	3600	1633	2:1
E3230.H	IL High-load/single sheave/deadend (pair)	1 9/16	40	4 13/16 122	2 1 13/16	3 45	23.4	642	3/8	10	1 1/2	40	2500	1134	5000	2268	2:1
E3250H	B High-beam/double sheave (pair)*	2 1/4	57	6 1/8 15	2 1/4	57	54.6	1547	3/8	10	1	25	700	318	1400	635	3:1 / 4:1
E3250	Double sheave/deadend (pair)	1 3/8	35	4 13/16 122	2 1 13/16	3 45	24.2	686	3/8	10	2 1/4	56	1800	816	3600	1633	3:1 / 4:1
E3250.H	IL High-load/double sheave/deadend (pair)	1 9/16	40	4 13/16 122	2 1 13/10	3 45	27.8	788	3/8	10	2 1/2	64	2500	1134	5000	2268	3:1 / 4:1
E3256	Double sheave/deadend/150 Cam-Matic (pair)‡	1 3/8	35	3 3/4 95	4 1/8	104	45.08	1278	3/8	10	2 1/4	56	900	408	2300	1040	4:1

[‡]Maximum working loads and breaking loads based on cam strengths.

32 mm Big Boat: Car Accessories

Stand-Up Toggles

Stand-up toggles hold blocks upright on travelers. Control tangs allow attachment of ball bearing Carbo control blocks.

Refer to chart below for mainsheet block compatibility. See page 120 for control block purchase selection guide.

Couplers

Big Boat couplers join two cars to form high-load assemblies. The high-load 580 and 752 couplers fit T3201B and T3201B.HL cars. Use 580 and 752 couplers for single-point attachments. Use single, double, or triple Black Magic with the 752 coupler.

Control Block Kits

Kits are available for Big Boat cars to add ESP sleevebearing control systems for up to 6:1 purchases. Combine with ESP end controls.

Replacement Traveler Kit

Replacement traveler kits are the easiest way to restore modern traveler function. Kit comes with prematched parts for easy retrofits.

Control blocks attach to ears to reduce load on car.

Toggles have a low pivot point to handle mainsheet loads up to 40 degrees from vertical, while allowing cars to roll freely.

Replacement Traveler Kit

		Boat I	ength			Max mai	nsail area		Maxi	mum		
Part	Mic	l-boom	End-	-boom	Mid-b	oom	End-b	oom	workin	g load		
No. Description	ft	m	ft	m	ft²	m²	ft²	m²	lb	kg	Purchase	Includes
3190 32 mm trave	eler kit/4:1 31 - 40	9.5 - 12.2	35 - 44	10.7 - 13.4	350	32.5	425	39.5	3000	1361	4:1	(1) T3241B, (1 pair) E3256

3190

Stand-Up Toggles

Part		Mainsheet b	lock pin Ø	Contro pin	l block 1 Ø	Hei	ght	Maxi workin	mum g load	
No.	Description	in	mm	in	mm	in	mm	lb	kg	Accepts mainsheet blocks
1947	Stand-up toggle	5/16, 3/8	8, 10			2 15/32	63	7500	3401	60 mm Element doubles, triples; 80 mm
1948	Stand-up toggle/control tangs	5/16, 3/8	8, 10	1/4	6	2 3/4	70	7500	3401	Element singles; Midrange blocks; 57 mm double, triple Black Magic; 75 mm single,
1949	Stand-up toggle/1 control tang	5/16, 3/8	8, 10	1/4	6	2 3/4	70	7500	3401	double Black Magic; 100 mm single Black Magic

Couplers & Control Block Kits

Part		She	ave Ø	Len	gth	Wi	idth	Wei	ight	Max	line Ø	Maxi workir	mum ig load		iking ad
No.	Description	in	mm	in	mm	in	mm	OZ	g	in	mm	lb	kg	lb	kg
3225	2-sheave control block*	2 1/4	57	5 3/8	143			8.8	249	1/2	12	2500	1134	5000	2268
T32KIT	Purchase upgrade kit**	(4) 35 m	ım contr	ol blocks	, (2) Mid	range/B	ig Boat d	eadends,	(8) M6 t	fastener	S				
T32KIT.HI	L Purchase upgrade kit/high-load‡	(4) 40 n	ım contr	ol blocks	, (2) Big	Boat de	adends, (8) M8 fa	steners						

^{*}Fits T32x4B.HL cars. **Fits 35 mm sheave Ø. ‡ Fits 40 mm sheave Ø.

32 mm Big Boat: Purchase Selection Guide

32 mm Big Boat: Genoa Lead Cars

CB adjustable genoa lead cars feature recirculating Torlon® ball bearings for easy adjustment under full sheet loads.

Stainless steel sheave carriers pivot 60 degrees to accommodate changing lead angles. Wide sheave holds two sheets during sail changes.

Cars feature car-mounted, sleeve-bearing control blocks for strength and durability. All CB genoa lead cars are compatible with Harken end controls. Kits are available for purchase upgrades up to 4:1.

CB Adjustable Cars

Sheave carriers feature high-performance sheaves with roller bearings to handle radial loads, while sideload balls handle thrust loads for easy trimming and fore-and-aft adjustment.

ESP CB Adjustable & Pinstop Cars

Sheave carriers feature ESP sleeve bearing sheaves.

Use pinstop cars in applications where lead positions change infrequently.

Pinstop and ball bearing genoa lead cars both run on ball bearing track, allowing system upgrades without changing track.

Torlon is a registered trademark of Solvay Advanced Polymers L.L.C.

G324B

G323B

PINSTOP

	End control selection	guide
Purchase	Car	End control
2:1	HC4928	E3230.HL
3:1	G323B/G3237B	E3250.HL/3174
4:1	G324B/G3247B	E3250.HL/3174

Part		She: Ø	ave	Len	gth	Wid	ith	Wei	ight	Maxi workin	mum g load	Brea loa	king ad	
No.	Description	in	mm	in	mm	in	mm	0Z	g	lb	kg	lb	kg	Track
CB Adju	stable													
G321B.HL	Big Boat/puller	3	76	10 5/8	270	3 3/8	85	83.95	2380	7716	3500	15432	7000	R32
G3237B	Big Boat/sheave/deadend	3	76	9 1/16	231	3 3/8	85	63.27	1794	5000	2268	10000	4536	R32
G3247B*	Big Boat/2 sheave	3	76	9 1/16	231	3 3/8	85	65.12	1846	5000	2268	10000	4536	R32
ESP CB	Adjustable													
G322B.HL	Big Boat/sheave	3	76	10 5/8	270	3 3/8	85	85.43	2422	7716	3500	15432	7000	R32
G323B	Big Boat/sheave/deadend	3	76	9 1/16	231	3 3/8	85	59.54	1688	5000	2268	10000	4536	R32
G324B	Big Boat/2 sheaves	3	76	9 1/16	231	3 3/8	85	62.14	1761	5000	2268	10000	4536	R32
ESP Pin	istop													
G326S	Big Boat/pinstop	3	76	9 1/8	232	2 1/2	64	53.26	1510	5000	2268	10000	4536	R32
G326S.HL	Big Boat HL/pinstop	3	76	9 1/8	232	2 1/2	64	62	1758	6000	2722	12000	5443	R32
Custom														
C6795	Big Boat/pinstop‡	3	76	10	254	2 1/4	57	61.83	1753	7716	3500	15432	7000	R32
C10051	Big Boat genoa lead**‡	2 15/16	75	10	254	2 3/8	60	59.26	1680	13228	6000	26448	12000	R32
C10232	Big Boat/pinstop**‡	2 15/16	75	10	254	2 3/8	60	61	1738	13228	6000	26448	12000	R32

^{*}Available as a non-CB car on a car loader to run on a non-CB style track supplied before 2004. Add .NW to end of part number. See page 272 for replacement balls.

G322B.HL

CB Cars: Windward Sheeting & 3:1 Cars with Cams

Windward Sheeting Cars

Race once with the windward sheeting traveler car and you'll never race without one again. Pull the car above the centerline without releasing the leeward control line. Tack, and the car stays in the same position, ready to be pulled to the new windward side.

Mount track in the cockpit or near deck level. For dinghies to large offshore boats.

3:1 Midrange Cars with Cams

The 1628 and 1629 cars with 365 Carbo-Cam cleats provide additional mechanical advantage (3:1 versus 2:1) by trimming from the car as opposed to a fixed point at the end of the track. Cars fit 27 mm Midrange CB track.

WINDWARD SHEETING ADAPTER KITS

2745

2746

Patented wire retaining clips keep balls captive, making cars easy to load and maintain. Composite corner keepers help keep ball bearings captive when the car is off the track. For a cost-effective option, CB+ cars can be modified to run on Harken non-CB track.

WINDWARD SHEETING CARS

3:1 MIDRANGE **CARS WITH CAMS***

Windward Sheeting Adapter Kits

Part			line Ø		
No.	Description	in	mm	Fits cars	Purchase
1637	Midrange CB	3/8	10	1624 / 1625	3:1 / 4:1
2752	Small Boat CB	5/16	8	2726 / 2727 / 2728	2:1 / 3:1
		2729	2730 /	2731 / 2735 / 2736	/ 2753 / 2754
3180	Big Boat CB	3/8	10	3163 / 3165	4:1 / 5:1 / 6:1

D4		Len	ath	Wid	lth.	Wei	iaht		line 3		mum ig load		king ad	
Part No.	Description	in	mm	in	mm	OZ	giil	in	mm	Ib	kg	lb	au kg	Purchase/end controls
	Small Boat Windward Sheeting					<u> </u>	3							
2745	Small Boat CB	6 7/8	175	3 1/16	78	24.75	702	5/16	8	850	386	2500	1134	2:1 / 3:1 / 2740
2746	Small Boat CB/high-load	6 7/8	175	3 1/16	78	26	737	5/16	8	1250	567	2500	1134	2:1 / 3:1 / 2740
27 mm	Midrange 3:1 Cars with Cams													
1628	Midrange CB/365 Carbo-Cam*	9 1/8	232	4 3/8	111	25.76	730	3/8	10	1800	816	5000	2268	3:1 / 1631
1629	Midrange CB/high-load/365 Carbo-Cam*	9 1/8	232	4 3/8	111	27.2	771	3/8	10	2300	1043	5000	2268	3:1 / 1631
27 mm	Midrange Windward Sheeting													
1635	Midrange CB	6 3/4	171	4 1/8	105	35	990	3/8	10	1800	816	5000	2268	3:1 / 4:1 / 1631
1636	Midrange CB/high-load	6 3/4	171	4 1/8	105	36	1020	3/8	10	2300	1043	5000	2268	3:1 / 4:1 / 1631
32 mm	Big Boat Windward Sheeting													
3176	Big Boat CB	9 9/16	243	5	127	57	1618	3/8	10	3000	1361	7000	3175	4:1 / 3168, 5:1 / 6:1 / 3169
3177	Big Boat CB/stand-up	9 9/16	243	5	127	62	1747	3/8	10	3000	1361	7000	3175	4:1 / 3168, 5:1 / 6:1 / 3169
3178	Big Boat CB/high-load	9 9/16	243	5	127	61	1723	3/8	10	4500	2041	9000	4081	4:1 / 3168, 5:1 / 6:1 / 3169
3179	Big Boat CB/high-load/stand-up	9 9/16	243	5	127	65	1851	3/8	10	4500	2041	9000	4081	4:1 / 3168, 5:1 / 6:1 / 3169

42 mm Mini-Maxi

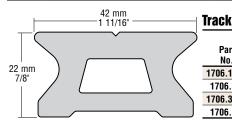
Mainsail Traveler Cars

42 mm Mini-Maxi travelers bring the ease of dinghy traveler adjustment to large offshore boats. Cars ride on two rows of recirculating Torlon® ball bearings and roll freely under high, nonvertical loads. Custom configurations or cars for horizontally curved track available on request.

Genoa Lead Cars

All cars are available with a plain body, with pinstops, or puller tangs. Car bodies are made of either hardcoatanodized aluminum or high-luster stainless steel. Maximum working loads range from 4082 kg (9000 lb) to 9000 kg (19842 lb). Custom cars can be designed to handle higher loads.

Torlon is a registered trademark of Solvay Advanced Polymers L.L.C.



Mainsail Travelers

		Length		Width		Height Weight		ght	Maximum working load		Breaking load			
Part No.	Description	in	mm	in	mm	in	mm	0Z	g	lb	kg	lb	kg	Track
C13849	Traveler car/soft attach	16	406	4 1/3	110	3 1/4	83	116.4	3300	15432	7000	30865	14000	1706
C12369	Traveler car with 2 Black Magic 125mm	16	406	4 1/3	110	11	281	194	5500	15432	7000	30865	14000	1706
1702	Endstop*	3 3/4	95	2 5/8	67	1 1/2	38	13	369					1706
1708	Adjustable stop	3 1/2	89	2 5/8	67	2 1/16	52	15	425					1706
1707	End control/padeye	5 1/4	133	2 5/8	67	3 1/8	79	29	822	7800	3540	15594	7075	1706
3069	End control/footblock/becket	5 5/8	143	2 5/8	67	2 3/4	70	25	710	2500	1134	5000	2268	1706
C5280	Traveler/(2) 3261 blocks‡	16	406	4 3/8	111	11	278	221	6275	12500	5670	25000	11340	1706
C5231	Traveler/(2) 3254 blocks‡	16	406	4 3/8	111	10	243	192	5443	10600	4808	21200	9616	1706
3068	Traveler**	10	254	4 3/8	111	3 3/4	95	81	2300	8750	3969	18000	8164	1706
HC10066	Traveler/HCP1128 toggle	10	254	4 3/8	111	4 3/16	106	91	2574	8750	3969	18000	8164	1706
C6138	End control with Black Magic 75mm w/becket	6	153	2 1/2	66	2 1/3	58	34.57	980	5258	2385	10516	4770	1706
C7513	Endstop/627 padeye‡	3 13/16	97	2 5/8	67	2 11/16	68	19	528	4300	1950	8600	3900	1706
C12792	Pinstop car	2 15/16	74	2 1/8	56	1 1/8	29	6.5	185	6614	3000	13228	6000	1706
C6762	Self-Tacking car with 2 Black Magic 125mm	16	406	4 1/3	110	11	282	238	6750	15432	7000	30864	14000	1706
C14967	Self-Tacking car	16	406	4 1/3	110	9 3/8	239	174.25	4940	10582	4800	21164	9600	1706
C15190	Self-Tacking car	12	305	4 1/3	110	11 3/8	290	139.33	3950	11001	4990	22002	9980	1706

Genoa Lead Cars

	She	ave)	Lei	ngth	Wid	lth	Heig	ıht	Wei	ight	Maxi workin		Brea lo	•	
Part No. Description	in	mm	in	mm	in	mm	in	mm	0Z	g	lb	kg	lb	kg	Track
C15012 Mini-Maxi Jib Car — adjustable	4	100	14	356	2 15/16	75	7 7/16	189	134.4	3810	19841	9000	39683	18000	1706
C10434 Mini-Maxi Jib Car — adjustable	3	75	10	254	2 15/16	75	6	155	73.4	2080	13228	6000	26455	12000	1706
C5900 Mini-Maxi lead car/slider rods	5 1/2	140	12	305	2 15/16	75	9 3/16	233	208.11	5900	14994	6800	39242	17800	1706

Part	Lengt	h	Moun hole spa		Wei	Fasteners Weight (FH)					
No.	ft/in	m	in	mm	0Z	kg	in	mm	Endstop		
1706.1.5M	4' 11 1/16"	1.5	2 15/16	75	81.5	2.31	3/8	10	1702		
1706.3M	9' 10 1/8"	3	2 15/16	75	163	4.62	3/8	10	1702		
1706.3.6M	11' 9 3/4"	3.6	2 15/16	75	195.4	5.54	3/8	10	1702		
1706.6M	19' 8 1/4"	6	2 15/16	75	325.9	9.24	3/8	10	1702		

			9								
	Minimum track radius										
	Hori	Horizontal Vertical									
Track	ft	m	ft	m							
1706	50	50 15.25 50 15.25									

Track bending

*First hole 37.5 mm (1 1/2").

64 mm Maxi

Mainsail Traveler Cars

64 mm Maxi travelers bring the ease of dinghy traveler adjustment to large offshore boats. Cars ride on two rows of recirculating Torlon® ball bearings and roll freely under high, nonvertical loads. Custom configurations or cars for horizontally curved track available on request.

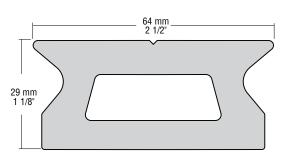
Genoa Lead Cars

All cars are available with a plain body, with pinstops, or puller tangs. Car bodies are made of either Hard Lubeanodized aluminum or high-luster stainless steel. Maximum working loads range from 9000 kg (19841 lb) to 13000 kg (28660 lb). Custom cars can be designed to handle higher loads.

Torlon is a registered trademark of Solvay Advanced Polymers L.L.C.

MAINSAIL TRAVELER CARS

Mainsail Travelers


Part		Shea Ø		Leng	ıth	Wid	ith	Hei	ght	We	ight	Maxi workin	mum ig load	Brea lo	king ad	
No.	Description	in	mm	in	mm	in	mm	in	mm	0Z	g	lb	kg	lb	kg	Track
C5160	Double pinstop**			5 1/4	133	3 3/4	95	2 9/16	65	38	1077	1900	8618	38000	17232	Custom
C6361	Endstop w/689 padeye * *			4 11/16	119	3 3/4	95	3 1/2	89	37	1048	7800	3540	15600	7075	661
662	Endstop*			4 3/4	121	3 3/4	95	2	51	28.8	816					661
664	Adjustable stop			3 7/8	98	3 3/4	95	2 1/2	64	26	737					661
3071	End control/footblock/becket	2 15/16	75	7 1/8	181	3 3/4	95	3 3/8	86	56	1596	5250	2380	10500	4762	661
C8583	Traveler**‡	5 15/16	150	28 1/4	718	5 3/16	132	12 7/8	327	537.6	15241	21168	9600	42336	19200	661
C14949	Traveler car with MYB **	6	150	14	356	3 3/4	95	12	309	224	6350	22046	10000	44092	20000	661

^{*16} mm (5/8") FH fasteners.
\$\daggeq\$When used in 4:1 system MWL is 13608 kg/30000 lb.
**Contact Harken to request quote and lead time.

Genoa Lead Cars

Part		Shea Ø	ive	Len	gth	Wid	th	Heig	ht	We	ight	Maxi workin		Brea lo:	•	
No.	Description	in	mm	in	mm	in	mm	in	mm	OZ	g	lb	kg	lb	kg	Track
C15086	Maxi Jib Car- adjustable	6 7/8	175	14	356	3 11/16	93	12 11/16	322	268	7610	28660	13000	57320	26000	661
C9368	Slider/dual pinstop	5 15/16	150	12	305	3 9/16	91	12 1/4	311	205.6	5829	19841	9000	39683	18000	Custom

Contact Harken to request quote and lead time.

Track bending											
	Minimum track radius										
	Horizontal Vertical										
Track	ft	m	ft	m							
661	100	30.5	50	15.25							

Track

Part	Lengt	Moun hole spa	We	ight	Fasten	ers (FH))		
No.	ft/in	m	in	mm	0Z	kg	in	mm	Endstop
661.2.1M	6' 10 11/16"	2.1	3 15/16	100	221.5	6.28	1/2	12	662
661.3M	9' 10 1/8"	3	3 15/16	100	316.4	8.97	1/2	12	662
661.6M	19' 8 1/4"	6	3 15/16	100	632.8	17.94	1/2	12	662

^{*}First hole 50 mm (1 15/16").

CRX Roller Cars

The Harken Custom Division has been supplying racers and cruisers with innovative hardware for over 20 years. Whether you use existing custom solutions or require something new, our engineers hold your project to the highest standards: from design, to manufacturing, finishing, installation, and worldwide service.

CRX Cars

CRX Roller traveler cars carry almost double the load at half the weight of similarly sized traveler cars. Torlon® rollers provide increased bearing contact over balls to handle higher loads. Captive bearings make cars easy to load and maintain.

Toggle cars such as the 3074 and 3075 offer a low-profile traveler solution. CRX Loop cars are alternatives for high-load applications.

Use roller travelers with straight track only. Contact Harken for curved traveler applications. Big Boat CRX track uses E3200 endstops and 3173 or 3174 end controls. Mini-Maxi track uses 1702 or custom endstops.

Torlon is a registered trademark of Solvay Advanced Polymers L.L.C.

42 MM MINI-MAXI

CRX Roller Cars

Quantum Racing, Keith Brash photo @ Quantum Racing

MEGA

Low-profile endstops available for CRX roller systems. Contact Harken.

Part		Length		Width		Height		Wei	ight	Maxi workin		Brea lo	king ad	
No.	Description	in	mm	in	mm	in	mm	0Z	g	lb	kg	lb	kg	Track
32 mm	Big Boat CRX													
3074	CRX Big Boat/single block	5	127	2 1/2	64	3 3/8	86	22	624	5000	2268	10000	4535	3079
3075	CRX Big Boat/single block‡	7 1/2	191	2 1/2	64	3 3/8	86	39	1106	7500	3401	15000	6803	3079
C8914	Endstop low profile *	2	50	1 1/4	32	7/16	11	6.7	190	1653	750			3079
C8728	CRX Big Boat Loop car	3 3/8	86	2 1/2	64	2	50	11.6	330	3300	1500	6600	3000	3079
C9969	CRX Big Boat Loop car	4 1/8	105	2 1/2	64	2	50	18	510	4188	1900	8377	3800	3079
C14640	CRX Big Boat Loop car	5	127	2 1/2	64	2	50	70.5	2000	5004	2270	10009	4540	3079
C9460	CRX Big Boat Loop car	7 1/2	191	2 1/2	64	2	50	78	2200	7483	3400	14967	6800	3079
C15258	CRX Big Boat Athwartships Jib car	8 3/8	213	2 1/2	64	5	122	71	2030	9921	4500	19842	9000	3079
C13285	Pinstop Car for 32mm CRX Track	2 7/16	62	1 3/4	43	1 1/8	29	3.17	90	2866	1300	5732	2600	3079
42 mm	Mini-Maxi CRX													
C8378	Endstop low profile *	3 5/8	92	1 9/6	40	7/16	11	6	107					3200
C8862	CRX Mini-Maxi/titanium coupler/2 blocks/fixed track	15 1/2	394	3 1/32	77	4 11/16	119	97.32	2759	15000	6803	30000	13608	3200
C9563	CRX Mini-Maxi/2 blocks	12	305	3 1/32	77	10 3/4	274	233.58	6622	15000	6803	30000	13608	3200
C9701	CRX Mini-Maxi/titanium coupler/2 blocks	16 3/16	411	3 1/32	77	4 11/16	119	113.63	3222	19845	9000	39618	18000	3200
C10747	CRX Mini-Maxi/aluminum coupler/2 blocks	15 1/8	384	3 1/32	77	5 9/16	141	96.06	2723	14307	6500	28613	13000	3200
C8955	CRX Mini-Maxi Loop car	7 1/2	191	3 1/32	77	2 1/4	57	29.2	827	7937	3600	15874	7200	3200
C9642	CRX Mini-Maxi Loop car	8	203	3 1/32	77	2 5/8	67	34.39	975	9921	4500	19845	9000	3200
C10413	CRX Mini-Maxi Loop car	11 1/2	292	3 7/32	82	3	76	57.97	1643	14434	6558	28868	13116	3200
C10598	CRX Mini-Maxi Traveler car with coupler/2 blocks	20	514	3	77	5 3/8	137	146	4150	23589	10700	47179	21400	3200
C14943	CRX Mini-Maxi Athwartships Jib car	11 1/2	292	3	77	4 7/8	122	76	2150	14458	6558	28916	13116	3200
C11432	Pinstop Car for 42mm CRX Track	2 3/4	70	2 1/4	57	1 1/8	30	6.7	190	8377	3800	16755	7600	3200
Mega C	RX													
C9541	Endstop - single*	4 1/4	108	3 3/4	95	1 7/8	47	47	1350					Custom
C6924	CRX mega/coupled	16 1/4	413	4 1/4	108	6 1/2	165	263.04	7457	26500	12020	53000	24040	Custom
C8990	CRX mega/coupled	20 1/4	515	4 1/4	108	6 1/2	165	301.59	8550	33069	15000	66138	30000	Custom
C15265	CRX Mega Traveler car with 150mm Black Magic blk	10	254	4 1/4	108	13 7/8	352	197	5590	19841	9000	39683	18000	Custom
C9679	CRX Mega Traveler car with coupler 2/MYB blocks	20 1/4	514	4 1/4	108	11 5/8	295	357	10140	30865	14000	61729	28000	Custom
C13559	CRX Mega Traveler car with coupler/1 block	20 1/4	514	4 1/4	108	8 1/8	207	327	9270	40785	18500	81571	37000	Custom
C12728	CRX Mega Athwartships Jib car	10	254	4 1/4	108	5 1/2	140	11.3	320	17637	8000	35274	16000	Custom
C11349	CRX Mega Athwartships Jib car	13 3/8	339	4 1/4	108	7 1/2	192	20	570	26455	12000	52910	24000	Custom

Contact Harken to request quote and lead time. ‡Includes adapter to fit 100 mm Black Magic. *Sold in pairs

CRX Track

Part	Lengi	th	Moun hole sp		We	ight	Fastene	ers (FH)	Endstop/
No.	ft/in	m	in	mm	0Z	kg	in	mm	splice link
32 mm Bi	g Boat CRX L	.ow-Be	am Roller Tr	ack					
3079.2M	6' 6 3/4"	2	2 15/16	75	72.8	2.064	5/16	8	E3200/3080
3079.3M	9' 10 1/16"	3	2 15/16	75	109.2	3.096	5/16	8	E3200/3080
42 mm M	ini-Maxi CRX	Low-B	eam Roller	Track					
3200.3M*	9' 10 1/16"	3	2 15/16	75	144.1	4.08		10	

³² mm 1 1/4" 22 mm 7/8" 36 mm 1 13/32"

*Contact Harken for track profile.

Curved Track

Track is often bent to follow the cabin house curve or boom radius. Sometimes track is bent vertically, ends up, to relieve tension on the sail's leech as the traveler car moves off the boat's centerline.

To perform smoothly and carry the correct load, the traveler car's length must suit the track radius. Each traveler car page has a chart which shows the minimum radius on which each car will ride. If the load requires a long car, but the radius will be too tight, consider using two short cars joined by a coupler.

Minor bends can often be made when the track is installed. If the track requires more bend, Harken can provide horizontal, vertical, or compound curves to specification for a modest charge. If the bend is continuous, add 50 - 100 mm (2 - 4") to each end because track cannot be bent to its ends. Standard Harken Mini-Maxi and Maxi traveler cars cannot ride on vertical bends with a radius under 15.25 m (50").

1. Vertical Bend: Ends Down

This bend is used for mainsheet travelers mounted over the cabin house. The curve matches the crown of the cabin house and allows the track to clear the companionway hatch, but minimizes the height of the track risers.

2. Vertical Bend: Ends Up

Some boats use this bend to relieve leech tension when the traveler car moves off centerline. Ends-up bends are also used for staysails. Tracks angled forward to face the clew of the sail mount on risers.

3. Horizontal Bend

Horizontal bends allow the traveler to follow the radius of the boom as it swings across the boat. The track stays flat and the ends curve to the boat's bow or stern. Sometimes horizontal bends are used for boom vangs and occasionally for staysails, especially those with booms.

4. Compound Bend

Compound bends are a combination of a vertical and horizontal bend. The track curves in the horizontal plane to follow the radius of the boom, but mounts to a deck that has a slight crown.

	Simple bend	Major bend	Compou	nd bends
Track	Part No.	Part No.	Simple Part No.	Major Part No.
2707	485*	486*	_	_
2709	487	488	_	_
373/374/2720/2721/2725/2751	274	275	276	286
1602/R27	1527	1528	1529	1581
R27HB	1530	1531	1532	1582
R32/3159	789	790	791	576
R32HB/1706	792	793	794	577
661	795	795	795	795
Simple hands treat langth of 0 m	(C C /) an laga		lass than 000 mm	· (0")

Simple bend: track length of 2 m (6'63/4") or less and chord depth less than 200 mm (8").

Major bend: track length of 2.1 m (6'10₁₁/₁₆") or greater or chord depth of 200 mm (8") or greater.

Compound bend: bend in both horizontal and vertical planes.
Compound simple bend: both bends are simple bends.

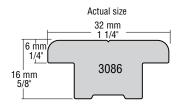
Compound major bend: one or both bends are major bends.

*Horizontal only. Contact Harken Tech Service for vertical bends.

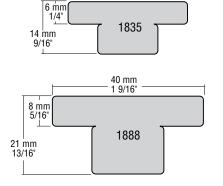
Ordering Information To order curved traveler track, please specify	y the following information:	Check one:
Boat model		Vertical bend: ends down
Track part number		Vertical bend: ends up
Bend part number		Horizontal bend: ends forward or aft
Chord length		Compound bend:
Chord depth: horizontal	or radius: horizontal	horizontal and vertical (ends down)
Chord depth: vertical	or radius: vertical	Compound bend:
		Horizontal and vertical (ends up)

Aluminum & Stainless Steel T-Track

Anodized aluminum T-Track features rounded top edges for protection and impact resistance. Drilled and tapped holes at ends make endstop installation easy.


32 mm high-performance track is black hardcoat-anodized. It has precise 33 mm pinstop hole spacing.

Stainless steel track is available in 32 and 40 mm. The high-luster finish makes it ideal for luxury cruisers/racers from 9.5 m - 42 m (33 - 140').


zefira, 49.7 m (163'), Dubois Naval Architects, © Fitzroy Yachts Ltd, www.fitzroyyachts.com

Part	Leng	th	Pins hole sp		Moun hole spa		Wei	ght	Faste (F		
No.	ft/in	m	in	mm	in	mm	0Z	kg	in	mm	Endstop
32 mm Black	-Anodized Alı	uminu	m T-Track								
3086.2M	6' 6 3/4"	2	3 15/16	100	3 15/16	100	63.46	1.8	5/16	8	
3086.3M	9' 10 1/8"	3	3 15/16	100	3 15/16	100	95.22	2.69	5/16	8	
32 mm Stainl	ess Steel T-Ti	rack**									
1835.2M	6' 6 3/4"	2	1 15/16	50	3 15/16	100	169.31	4.8	5/16	8	1836
1835.4M	13' 1 1/2"	4	1 15/16	50	3 15/16	100	338.62	9.6	5/16	8	1836
40 mm Stainl	ess Steel T-Ti	rack**									
1888.2M	6' 6 3/4"	2	1 15/16	50	3 15/16	100	282.91	8		12	1889
1888.4M	13' 1 1/2"	4	1 15/16	50	3 15/16	100	564.37	16		12	1889

50 mm T-Track available. Contact Harken to request quote and lead time. *First hole 50 mm (1 15/16").

24 **Contact Harken to request lead time.

32 mm 1 1/4"

T-Track Genoa Lead Cars

T-Track genoa lead cars are used where frequent lead adjustments are not required. T-Track cars have an integral pinstop to lock the car into position.

The car's one-piece, solid aluminum construction is lightweight and strong. The stainless steel carrier tilts side-to-side to ensure a fair lead. 40 mm cars have roller/ball bearing sheaves to improve trimming performance.

Custom accessories such as remote pinstops and adjustable sliders with tangs to accommodate floating blocks are available. Contact Harken for information on our complete range.

Note: T-Track genoa lead cars cannot be adjusted under load.

Skimmer, Balance 760 F, 22 m (78.12'), Du Toit Yacht Design

C10901

For sheet-loading formulas see page 275

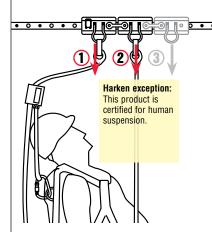
														<i>FUI</i> 3	sileet-iva	uniy iviii	iuias see	page 275
Part		Shea Ø	ve	Ler	gth	Wid	th	Heiç	ght	We	ight	Max I Ø	ine		mum ig load	Brea lo:	•	
No.	Description	in	mm	in	mm	in	mm	in	mm	0Z	g	in	mm	lb	kg	lb	kg	Track
32 mm	T-Track																	
GT326S	Genoa lead car/pinstop*	2	51	5 1/8	130	2	51	4 7/16	113	22.1	626	1/2	12	3000	1361	6000	2722	3086
40 mm	T-Track																	
C4219	Genoa slider‡	4 1/2	114	9	229	2 9/16	65	8 7/16	214	104.6	2970	5/8	16	12860	5845	25720	11690	1888
C9577	Jib car/pinstop‡	5 15/16	150	11	279	2 9/16	65	10 3/4	273	312	8824	1	25	15435	7000	44092	20000	1888
C5754	Jib car/maxi sheave‡	5 1/2	140	11	279	2 9/16	65	9 1/4	235	184	5220	7/8	22	19625	8900	39249	17800	1888
C13260	Pinstop Car for 40mm*			3 7/8	98	2 1/2	65	1 7/8	47	16	460			11023	5000	2204	10000	1888
C9043	Pinstop Car for 40mm T-Track			4	102	2 1/2	63	2 3/8	61	59.3	1680			28660	13000	57320	26000	Custom
50 mm 1	T-Track‡‡																	
C10948	Jib Car with Pinstop	7 7/8	200	14	356	3 3/8	86	14	355	442	12540	1 7/16	36	33069	15000	66138	30000	Custom
C9242	T-Track slider/puller tang‡	7 7/8	200	14	356	3 3/8	86	13 5/8	346	649	18400	1 1/8	28	50706	23000	101412	46000	Custom
C10901	T-Track slider/puller tang*	7 7/8	200	14	356	3 3/8	86	14	356	418	11837	1 1/8	28	50706	23000	101412	46000	Custom
C8774	Pinstop Car for 50mm T-Track			4	102	3 3/8	86	2 1/2	66	81.83	2320			28660	13000	5732	26000	Custom
C5834	Endstop for 50mm T-Track			3 3/8	85	1 1/3	33	1 1/8	28	28	790			7015	3182	14030	6364	Custom
* A I	* * Ctainless steel tusel, anl.	±Contont Ho	december 4				La a al a		1150	T	Torra de la con-	11 - I- I -	0	سمياسما المس				

C9242

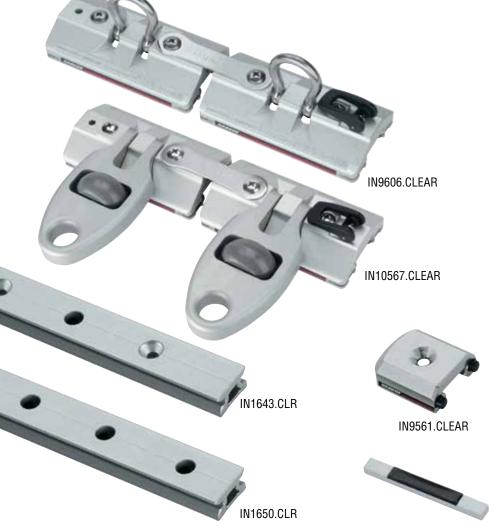
*Aluminum. **Stainless steel track only. ‡Contact Harken to request quote and lead time. ‡50 mm T-Track available. Contact Harken.

Access Rail System

Harken designed the Access Rail system so crews of very large yachts would have a secure system that allows freedom of movement, and the ability to lock into position while working outboard along the hull. The Access Rail system is made up of two joined cars that allow the attachment of the personal suspension and the required fall-arrest systems. Its CE certification is among the most respected marks in the world and unique in the marine industry.


Linked cars are constructed of strong, lightweight, one-piece solid aluminum. The pinstop is easy to release, and the car moves smoothly along the track before locking into another position. Patented wire retaining clips keep balls captive, making cars easy to load and maintain. Composite corner keepers help keep ball bearings captive when the car is off the track.

Cars and track come in black hardcoat-anodized or clear-anodized finishes for corrosion protection, durability, and to match the yacht's aesthetics. Stainless steel systems can be special ordered from Harken's Custom Division.


Use the IN10567 car when the track is mounted on a brow or angled on surfaces. The wheel toggle attachment overhangs the edge of the mounting surface so the side of the hull is not chafed.

Pinstop car allows movement of cars along track. Open to move; close to lock in place.

The system has two anchorage points—one anchorage point for a personal suspension system and the second for the fall-arrest system. Add an optional car and coupler to work as a tool service carrier.

IN1649 IN1651

Access Rail System

Photo © TLC Refit & Repairs

Car Assembly

Part		Len	gth	Wid	ith	Maxi workin		Fits
No.	Description	in	mm	in	mm	lb	kg	track
IN9606.CLEAR*	27 mm Midrange 2-car Access Rail car assembly with coupler	10 3/4	273	2 3/4	70	300	136	IN1643, IN1650
IN10567.CLEAR*	27 mm Midrange 2-car Access Rail car assembly with wheel toggle	10 3/4	273	5 15/16	150	300	136	IN1643, IN1650

M/Y Princess Too photo

Access Rail cars must only be used with track mounted using 8 mm (5/16") fasteners. Use only endstops listed below. *To order black hardcoat-anodized, remove ".CLEAR" from end of part number.

Removable Pinstop & Track Endstop

Part		Len	gth	Wid	ith	We	ight	Height ab	ove track	Fasteners	
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm
IN1642.CLEAR*	Pinstop	2 5/16	59	1 15/16	49	4.8	136	1 5/16	33		
IN9561.CLEAR*	27 mm Midrange track endstops (sold in pairs)	2 1/4	57	2	51	6	170	5/16	8	5/16 FH	8 FH

^{*}To order black hardcoat-anodized, remove ".CLEAR" from end of part number.

Track

				Moun	ting				
Part		Lengtl	h	hole sp	acing	Fasten	ers		Splice
No.	Description	ft/in	m	in	mm	in	mm	Endstop	link**
IN1643.3M.CLR*	27 mm Midrange pinstop track for countersink fasteners	9' 10 1/16"	3	3 15/16	100	5/16 FH	8 FH	IN9561.CLEAR*	IN1649
IN1643.3.6M.CLR*	27 mm Midrange pinstop track for countersink fasteners	11' 9 3/4"	3.6	3 15/16	100	5/16 FH	8 FH	IN9561.CLEAR*	IN1649
IN1643.6M.CLR*	27 mm Midrange pinstop track for countersink fasteners	19' 8 1/4"	6	3 15/16	100	5/16 FH	8 FH	IN9561.CLEAR*	IN1649
IN1650.3M.CLR*	27 mm pinstop track for caphead fasteners	9' 10 1/16"	3	3 15/16	100	5/16 SHCS	8 SHCS	IN9561.CLEAR*	IN1651
IN1650.3.6M.CLR*	27 mm pinstop track for caphead fasteners	11' 9 3/4"	3.6	3 15/16	100	5/16 SHCS	8 SHCS	IN9561.CLEAR*	IN1651

^{*}To order black hardcoat-anodized, remove ".CLR" or ".CLEAR" from end of part number. **Purchase one splice link for each track section. Harken exception: This product is certified for human suspension.

IF YOU TRY MARINE GRIP, WE BELIEVE YOU'LL STICK WITH IT.

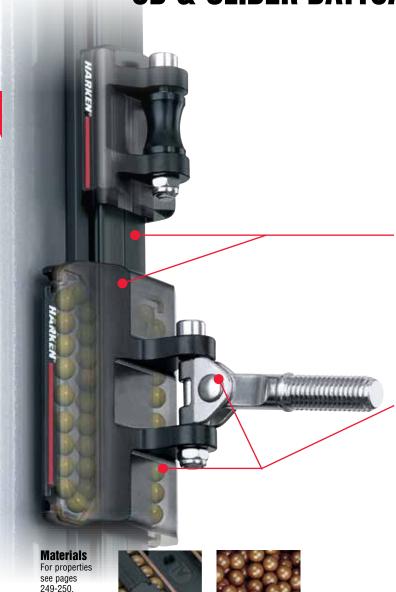
On the boat or on the dock. You'll like Harken Marine Grip for what it does.

You'll like it even more for what it doesn't do.

This product does what a lot of competitive products claim to do—keep you from slipping.

Testing proves Marine Grip does this at least 40% more effectively than competitive products or wax.

But please note, it doesn't do everything. It doesn't rip up your hands and knees, your swimsuit or your foul weather gear. It doesn't hold onto dirt, change color or get slippery after exposure to UVs and sea. Plus, it doesn't take all day to remove it.



CB & SLIDER BATTCAR SYSTEMS

6061-T6 aluminum: Hard Lube-anodized cars; hardcoat-

anodized track

Torion® thermoplastic: Ball bearings

Favored by skippers and crew, Harken Battcar systems let you raise, douse, and reef the main instantly from the cockpit, even when close reaching in a big breeze. Battcar systems outperform in-mast or in-boom furling, cost far less, and sails don't need to be recut. Four sizes fit monohulls to 27 m (90'); multihulls to 21 m (70').

Strong, corrosion-resistant cars and track stand up to sun, salt, and time

- One-piece, 6061-T6 aluminum cars Hard Lube-anodized, UV-stabilized.
- Track is 6061-T6 aluminum, hardcoat-anodized.

Low-friction ball bearing cars for easy adjustment under load

- · High-strength Torlon® ball bearings circulate smoothly for fast sail hoists, douses, and reefs.
- . Batten toggle moves freely in all directions to prevent sail from binding when reefing under load.

Sails can be raised/lowered without sticking in mast groove

· Slider cars ride on low-friction plastic inserts.

Quick sail removal

- Cars and sails slide off the track by removing the screwpin endstop—no tools required.
- Patented CB captive bearings allow cars to easily roll off track for cleaning and maintenance.
- Captive pin features a quick-release button to remove sail quickly, while allowing car to remain on mast.

Cost-effective retrofit options

- CB and slider Battcar systems use the same track; mix and match to optimize performance and budget.
- CB+ cars can be modified to run on Harken old-style, non-CB track produced until 2003; upgrade cars without replacing track. Look for the "+" symbol at the end of the car.

Easy mast-up installation

 Battcar track screws directly into slugs that slide into mast groove — no drilling or tapping.

Variety of mounting options

- Slugs for flat or round mast grooves; 1 kit per track section.
- Screwpin endstops to remove cars and mainsail; 1 kit per system.
- Mount flanged track to carbon spars; track features groove for racing sails with boltropes or slugs.
- Masts without internal track, attach Harken 13 32 mm traveler track by drilling and tapping the spar.

System AA

Typical boat size: Monohulls: length to 11.3 m (37'); mainsail area under 32 m² (350 ft²)

Multihulls: length to 9.1 m (30'); mainsail area under 26 m 2 (275 ft 2)

About CB and slider Battcar systems: see feature pages at beginning of this section.

Patented wire retaining clips keep balls captive, making cars easy to load and maintain.

Threaded stud and toggle design handles twisting and angled loads for quick hoisting and dousing.

Cars are easily removed from the track by freeing the screwpin endstop and sliding them off.

Part		Len	gth	Wid	ith	We	ight		adboard mess		imum ng load
No.	Description	in	mm	in	mm	0Z	g	in	mm	lb	kg
Typical B	oat Length: monohulls to 11.3	m (37'); multih	ulis to 9.	1 m (30')							
3813	CB headboard car assembly	5 3/16	132	1 9/16	40	6.7	188	1/2	12	440	200
3814	Slider intermediate car	1 3/4	44	1	25	0.5	15			130	59
3815	CB intermediate car	2 3/16	56	1 9/16	40	1.7	48			130	59
3816	CB Battcar/10 mm stud*	2 3/16	56	1 9/16	40	3	85			220	100

3815

System AA

About CB and slider Battcar systems: See feature pages at beginning of this section.

Mast Track: Slug Mount

3817 track mounts to mast using a unique slug system that allows mast-up installation.

Part		Len	gth	We	ight	Faste spac		Fastening
No.	Description	in	m	oz/ft	g/m	in	mm	method
3817	Slug-mount track	80 3/4	2.05	2.84	264	3 15/16	100	Mounting slugs

Traveler Track: Drill/Tap

For masts without internal sail track, attach 2707 Micro traveler track by drilling and tapping the spar. Join track sections with splice links. Order one per track joint. Order one low-beam endstop (sold in pairs).

Part No.	Description	Splice link	Endstop	Ordering information	Fastening method
2707	Micro track	2711	2706	page 102	Drilling and tapping

Kazahaya, Parigi 30, Alessandro Comuzzi architect © Alessandro Comuzzi

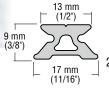
Mounting Kits and Endstops

Mounting kit slugs are available for flat or round mast grooves. Order one kit per track section.

Use screwpin endstop to easily remove cars and mainsail. Order one kit.

3818 3819 3820

Track Mounting Kits: Slug Mount*


Mainsail luff length ft* Number of 3817 track sections 19'7" - 26'3" 5.98 - 8.00 4 26'4" - 33' 8.03 - 10.06 5 33'1" - 39'9" 10.08 - 12.11 6 39'10" - 46'5" 12.13 - 14.16 7

*Track extends above sail luff. Using screwpin endstop kits will increase lengths

2707 Micro traveler track

ENDSTOP KIT/SCREWPIN

			Mounti	ing slug				Connec	tor slug			Fit	s flat mas	t groove (gap
Part		Ler	ngth .	Wei	ght	Mounting	Len	igth	Wei	ight	Connector	M	lin	M	ax
No.	Description	in	mm	OZ	g	slugs/kit	in	mm	0Z	g	slugs/kit	in	mm	in	mm
3818	Round mast groove	3/4	19	0.14	4	19	2 5/8	67	0.54	15	1				
3819	Flat mast groove	3/4	19	0.17	5	19	2 5/8	67	0.6	17	1	5/16	8	7/16	11
3820	Wide flat mast groove	3/4	19	0.25	6	19	2 5/8	67	0.94	23	1	7/16	11	1/2	13

Endstop	Kits:	Slug	Mount	&	Drill/Tap*
Dort					

Part		Track end	l length	Wei	ght	
No.	Description	in	mm	0Z	g	Mounting slugs/kit
3821	Round mast groove/screwpin	6	152	2.4	70	2
3822	Flat mast groove/screwpin	6	152	2.4	70	2
3823	Wide flat mast groove/screwpin	6	152	2.4	70	2
3837	Micro track/screwpin	6	152	2.2	62	

^{*}Includes M4 x .7 x 20 or 25 mm fasteners.

System A Battcars

Typical boat size:

Monohulls: length 11.3 - 15.2 m (37 - 50'); mainsail area under 56 m² (600 ft²)

Multihulls: length 9.1 - 12.2 m (30 - 40'); mainsail area under 46 m 2 (500 ft 2)

3830

3889

3811

3829

3812

3831

SLIDER CARS

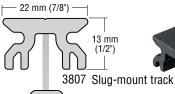
Part		Le	ngth	Wie	ith	Wei	ight	Max hea		Wi	Max t		Ø		Maxi workin	
No.	Description	in	mm	in	mm	0Z	g	in	mm	in	mm	in	mm	Batten	<u>lb</u>	kg
CB Car	s: Typical Boat Length: Monohulls 11	.3 - 15.2	2 m (37 - 50'); Mult	ihulls 9.	.1 - 12.	.2 m (30	- 40')*							
3811*	Headboard car assembly	8 3/8	213	2 1/4	57	18	518	9/16	14						1600	725
3889	Headboard car assembly/quick-release	9 1/2	240	2 1/4	57	21.5	610	9/16	14						1600	725
3812*	Intermediate car**	2 1/4	57	2 1/4	57	4	109								465	211
3829*	Battcar/10 mm stud**	2 7/8	73	2 1/4	57	6	157								600	272
3830*	Battcar/40 mm receptacle	2 7/8	73	2 1/4	57	9	253			1 5/8	41	5/8	16	Flat/Round	600	272
3881	Battcar/12 mm stud**	2 7/8	73	2 1/4	57	6.4	182								600	272
3831	Universal Battcar**	2 7/8	73	2 1/4	57	4.3	122								600	272
3882	Long batten car/12 mm stud**	4 1/8	105	2 1/4	57	8.2	232								875	397
3883	Reef car	4 1/8	105	2 1/4	57	6.1	174								875	397
3901*	Battcar/10 mm stud for C-Tech Batten	2 7/8	73	2 1/4	57	6	157								600	272
Slider	Cars: Typical Boat Length: Monohulls	11.3 -	15.2	m (37 -	50'); N	lultihull	s 9.1 -	12.2 m	(30 - 40)')						
3827	Headboard car assembly**	6	153	1 3/8	35	10	269	9/16	14						1600	725
1777	Low-load intermediate car‡	2	51	1 1/4	32	1.1	32				,				200	91
3828	Intermediate car	1 3/4	44	1 3/8	35	1.6	45								159	350
3802	Battcar/10 mm stud**	1 3/4	44	1 3/8	35	2.8	80								350	159
3803	Battcar/40 mm receptacle	1 3/4	44	1 3/8	35	6.38	181			1 5/8	41	5/8	16	Flat/Round	350	159
3902	Battcar/10 mm stud for C-Tech Batten	1 3/4	44	1 3/8	35	2.8	80								350	159
C14840	Intermediate car/quick-release pin	1 3/4	44	1 3/8	35	1.2	37								200	91

See page 273 for replacement balls. *Available as a non-CB car on a car loader to run on a non-CB style track supplied before 2003. Add .NW to end of part number. ‡ Max. sail area: Monohull 33 m² (350 ft²), Multihull 28 m² (300 ft²). **Batten receptacle not included.

System A

About CB and slider Battcar systems: See feature pages at beginning of this section.

Mast Track

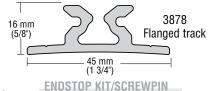

3807 track mounts to mast using a unique slug system that allows mast-up installation.

Use flanged track when mounting to carbon spars. Track features a groove for racing sails with boltropes or slugs.

Part		Len	gth	Wei	ight	Faste spac		Fastening
No.	Description	in	m	oz/ft	g/m	in	mm	method
3807	Slug-mount track	80 3/4	2.05	4.44	413	4 15/16	125	Mounting slugs
3878.2M	Flanged track	78 3/4	2	6.7	626			Adhesive
3878.6M	Flanged track	236 1/4	6	6.7	626			Adhesive

Mainsail I	uff length	Number of 3807			
ft*	ft* m*				
26'4" - 33'	8.03 - 10.06	5			
33'1" - 39'9"	10.08 - 12.11	6			
39'10" - 46'5"	12.13 - 14.16	7			
46'6" - 53'2"	14.19 - 16.21	8			
53'3" - 59'11"	16.24 - 18.26	9			


^{*}Track extends above sail luff. Using screwpin endstop kits will increase lengths.


3804 Mounting kit 3808 Endstop kit/fixed 3824 Endstop kit/screwpin

> 3805 Mounting kit 3809 Endstop kit/fixed 3825 Endstop kit/screwpin

> > 3806 Mounting kit 3810 Endstop kit/fixed 3826 Endstop kit/screwpin

2720 Small Boat traveler track

Traveler Track: Drill/Tap

For masts without internal sail track, attach 2720 Small Boat traveler track by drilling and tapping the spar. Join track sections with splice links. Order one per track section. Order one low-beam endstop (sold in pairs).

Part No.	Description	Splice link	Endstop	Ordering information	Fastening method
2720	Small Boat track	2724	263	page 104	Drilling and tapping

Mounting Kits and Endstops

Mounting kit slugs are available for flat or round mast grooves. Order one kit per track section.

Use screwpin endstop to easily remove cars and mainsail. Order one kit only.

MOUNTING KIT

3804 3805 3806

ENDSTOP KIT/FIXED

3808 3809 3810

Track Mounting Kits: Slug Mount*

			Mounting slug Connec					tor slug	-				Fits flat mast groove gap		
Part		Len	gth	Wei	ght	Mounting	Len	igth	Wei	ght	Connector	M	in	Ma	ax
No.	Description	in	mm	OZ	g	slugs/kit	in	mm	OZ	g	slugs/kit	in	mm	in	mm
3804	Round mast groove	3/4	19	0.14	4	15	2 5/8	67	0.54	15	1				
3805	Flat mast groove	3/4	19	0.17	5	15	2 5/8	67	0.6	17	1	5/16	8	7/16	11
3806	Wide flat mast groove**	3/4	19	0.25	6	15	2 5/8	67	0.94	23	1	7/16	11	5/8	16

**Findston Kits: Slug Mount

Fiinstoh	Kits. Olug mount					
Part	'	Track er	d length	Wei	ight	
No.	Description	in	mm	0Z	g	Mounting slugs/kit
3808	Round mast groove/fixed (pair)			0.5	14	2
3809	Flat mast groove/fixed (pair)			0.52	15	2
3810	Wide flat mast groove/fixed (pair)			0.67	19	2
3824	Round mast groove/screwpin	8	203	5.4	155	3
3825	Flat mast groove/screwpin	8	203	5.5	157	3
3826	Wide flat mast groove/screwpin	8	203	6.1	174	3

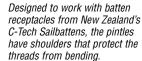
^{*}Includes M5 X .8 X 20/25 mm or 25 mm fasteners.

System B

Typical boat size:

Monohulls: length 15.2 - 18.3 m (50 - 60'); mainsail area under 83 m² (900 ft²)

Multihulls: length 12.2 - 15.2 m (40 - 50'); mainsail area under 65 m 2 (700 ft 2)


About CB and slider Battcar systems: see feature pages

3859

CB BALL BEARING CARS

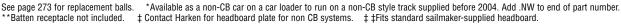
3893

3907

3904

3860

3852



3857 3879

HEADBOARD PLATES

		Length		Wid	lth	We	ight		adboard ness		mum ng load	
Part No.	Description	in	mm	in	mm	0Z	g	in	mm	lb	kg	
CB Cars:	CB Cars: Typical Boat Length: Monohulls 15.2 - 18.3 m (50 - 60'); Multihulls 12.2 - 15.2 m (40 - 50')											
3852	Headboard car assembly**	10 1/2	267	2 3/4	70	41.4	1173	7/16	12	3200	1450	
3863	Intermediate car**	2 9/16	68	2 3/4	70	6.8	191			524	238	
3856	Battcar/10 mm stud**	4 1/4	108	2 3/4	70	14.3	406			1260	571	
3857	Battcar/12 mm stud * *	4 1/4	108	2 3/4	70	14.6	413			1260	571	
3879	Battcar/14 mm stud	4 1/4	108	2 3/4	70	15.1	429		·	1260	571	
3859	Universal Battcar ‡	4 1/4	108	2 3/4	70	12.3	348			1260	571	
3860	Reef car ‡	5 3/16	132	2 3/4	70	14.4	408			1600	725	
3861	Web-on headboard plate	6 3/4	172	6 3/8	161	10.3	292					
3862	Web-on headboard plate/flat-top # #	5 13/16	148	6 3/16	157	11.2	317					
3903	Battcar/10 mm stud for C-Tech Batten **	4 1/4	108	2 3/4	70	14.5	413			1260	571	
3893	Battcar/12 mm stud for C-Tech batten**	4 1/4	108	2 3/4	70	14.9	423			1260	571	
3907	Battcar/14 mm stud for C-Tech batten**	5 3/16	132	2 3/4	70	17.6	500			1600	725	
Slider Ca	rs: Typical Boat Length: Monohulls 15.	2 - 18.3 m	(50 - 60')	; Multihulis	12.2 - 15	i.2 m (40 -	50')**					
3833	Headboard car assembly**	7 1/2	190	1 11/16	42	14.8	420	9/16	16	3200	1450	
3836	Intermediate car	2 3/16	56	1 11/16	42	2.9	82			1260	571	
3834	Battcar/10 mm stud**	2 3/16	56	1 11/16	42	4.5	128			1260	571	
3835	Battcar/12 mm stud**	2 3/16	56	1 11/16	42	4.9	140			1260	571	
3904	Battcar/10 mm stud for C-Tech Batten **	2 3/16	56	1 11/16	42	4.5	128			1260	571	

System B

systems: see feature pages at beginning of this section.

Mainsail	Mainsail luff length								
ft*	ft* m*								
39'10" - 46'6"	12.13 - 14.17	7							
46'7" - 53'3"	14.19 - 16.23	8							
53'4" - 60'	16.25 - 18.29	9							
60'1" - 66'9"	18.31 - 20.35	10							
66'10" - 73'6"	20.37 - 22.44	11							

^{*}Track extends above sail luff. Using screwpin endstop kits will increase lengths.

Mast Track

3844 track mounts to mast using a unique slug system that allows mast-up installation.

Use flanged track when mounting to carbon spars. Track features a groove for racing sails with boltropes or slugs. Use C10879 endstop feeder kit to easily raise sails with boltropes.

Part		Len	gth	We	ight	Faste spac		Fastening
No.	Description	in	m	oz/ft	g/m	in	mm	method
3844	Slug-mount track	81 1/8	2.06	5.66	527	3 15/16	100	Mounting slugs
3849.2M	Flanged track	78 3/4	2	12	1119			Adhesive
3849.6M	Flanged track	236 1/4	6	12	1119			Adhesive
C10879	Endstop/feeder kit*	15 3/4	0.4	22.4	636	2 15/16	75	Fasteners/adhesive

^{*}Use with 3849 flanged track. Contact Harken for price and lead time.

Traveler Track: Drill/Tap

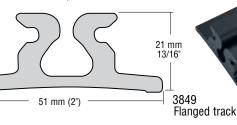
For masts without internal sail track, attach R27 Midrange traveler track by drilling and tapping the spar. Join track sections with splice links. Order one per track section. Order one low-beam endstop (sold in pairs).

Part No.	Description	Splice link Endstop		Ordering information	Fastening method
R27	Midrange track	1619	E2700	Page 109	Drilling and tapping

Mounting Kits and Endstops

Mounting kit slugs are available for flat or round mast grooves. Order one kit per track section.

Use pinstop endstop to easily remove cars and mainsail. Order one kit only. 3850



track 14 mm 9/16" Mounting kit 3845 3847 Endstop kit/pinstop Endstop kit/fixed 3850 3846 Mounting kit 3848 Endstop kit/pinstop 3851 Endstop kit/fixed 3864 Mounting kit 3865 Endstop kit/fixed 3866 Endstop kit/pinstop 27 mm 1 1/16 14 mm **R27** Midrange 25 mm

3844

Slug-mount

27 mm (1 1/16")

traveler track

ENDSTOP/FEEDER KIT

Track Mounting Kits: Slug Mount*

			Mounti	ng slug				Connec	tor slug			Fits	flat mas	t groove	gap
Part		Len	gth	Wei	ight	Mounting	Le	ngth	Wei	ght	Connector	M	in	M	lax
No.	Description	in	mm	0Z	g	slugs/kit	in	mm	0Z	g	slugs/kit	in	mm	in	mm
3845	Round mast groove	7/8	22	0.43	12	19	3	76	1.27	36	1	7/16	11	5/8	16
3846	Flat mast groove	7/8	22	0.56	16	19	3	76	1.71	48	1	7/16	11	5/8	16
3864	Flat mast groove**	7/8	22	0.48	14	19	3	76	1 29	37	1	3/8	9.5	7/16	11

Endstop Kits: Slug Mount*

Part		Track end	l length	Wei	ght	
No.	Description	in	mm	OZ	g	Mounting slugs/kit
3847	Round mast groove/pinstop	9 1/2	241	8.3	234	3
3848	Flat mast groove/pinstop	9 1/2	241	11.3	322	3
3850	Round mast groove/fixed (pair)			3.3	94	2
3851	Flat mast groove/fixed (pair)			3.7	105	2
3865	Flat mast groove/fixed**			3.5	100	2
3866	Flat mast groove/pinstop**	9 1/2	241	11.1	316	3

^{*}Includes M6 x 1.0 x 20 or 30 mm fasteners; weights include fasteners; not for flanged track. **For Selden mast section C installations.

System C

Typical boat size:

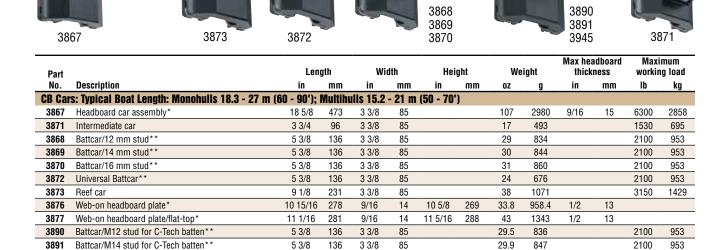
Monohulls: length 18.3 - 27 m (60 - 90'); mainsail area under 180 m² (1940 ft²)

Multihulls: length 15.2 - 21 m (50 - 70'); mainsail area under 140 m² (1510 ft²)

About CB and slider Battcar systems: see feature pages at beginning of this section.

Pelagic Belle, Knysna 500, Angelo Lavranos, Knysna Yacht Company © Rika Fouché

Designed to work with batten receptacles from New Zealand's C-Tech Sailbattens, the pintles have shoulders that protect the threads from bending.



2100

953

Aluminum web-on headboard plates are easy for sailmakers to install. Plates have radiused edges to protect the sail and fit 25 mm (1") webbing strap. Holes threaded into plates accept 416 cheek blocks for leech line. Web-on plates are required for the 3867 System C CB headboard car. Sold separately.

See page 273 for replacement balls. *Contact Harken for headboard plate for older systems. *

5 3/8

136

3 3/8

Battcar/M16 stud for C-Tech batten**

31.5

894

^{**}Batten receptacle not included

System C

About CB and slider Battcar systems: See feature pages at beginning of this section.

Mast Track

3853 track mounts to mast using a unique slug system that allows mast-up installation.

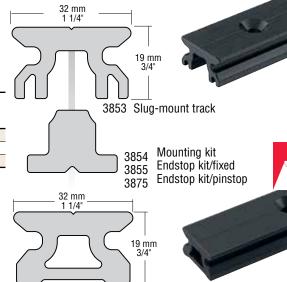
Use flanged track when mounting to carbon spars. Track features a groove for racing sails with boltropes or slugs.

Part		We	ight	Faste spac		Fastening		
No.	Description	in	m	oz/ft	g/m	in	mm	method
3853	Slug-mount track	81 15/16	2.08	9.28	863	3 15/16	100	Mounting slugs
3858.2M	Flanged track	78 3/4	2	17.38	1619			Adhesive
3858.6M	Flanged track	236 1/4	6	17.38	1619			Adhesive

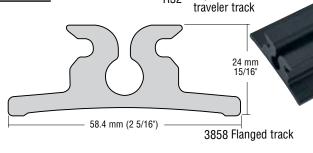
Traveler Track: Drill/Tap

For masts without internal sail track, attach R32 Big Boat traveler track by drilling and tapping the spar. Join track sections with splice links. Order one per track section. Order one low-beam endstop (sold in pairs).

Part No.	Description	Splice link	Endstop	Ordering information	Fastening method
R32	Big Boat track	3153	E3200	page 115	Drilling and tapping


Mounting Kits and Endstops

Mounting kit slugs are available for flat mast grooves. Order one kit per track section.


Use pinstop endstop to easily remove cars and mainsail. Order one kit only.

Mainsail	luff length	Number of 3853
ft*	m*	track sections
53'8" - 60'5"	16.36 - 18.42	9
60'6" - 67'3"	18.45 - 20.50	10
67'4" - 74'1"	20.53 - 22.58	11
74'2" - 80'11"	22.61 - 24.66	12
81' - 87'9"	24.69 - 26.74	13
87'10" - 94'7"	26.77 - 28.82	14
94'8" - 101'5"	28.85 - 30.90	15

*Track extends above sail luff. Using screwpin endstop kits will increase lengths.

Big Boat

R32

30 mm 1 3/16"

Track Mounting Kits: Slug Mount

3855

	Mounting slug								ctor slug			Fits	Fits flat mast groove gap			
	Part		Le	ngth	We	ight	Mounting	Len	igth	We	ight	Connector	M	in	M	lax
	No.	Description	in	mm	0Z	g	slugs/kit	in	mm	0Z	g	slugs/kit	in	mm	in	mm
Ī	3854	Flat mast groove	1	25	0.6	17	19	4 1/8	105	2.49	70	1	17/32	13	5/8	16

Endstop Kits: Slug Mount

Part		Track end	l length	Wei	Weight				
No.	Description	in	mm	0Z	g	Mounting slugs/kit			
3855	Flat mast groove/fixed (pair)*			16	454	2			
3875	Flat mast groove/pinstop*	17	432	30	853	5			

SWITCH T-TRACK BATTCAR SYSTEMS

Harken's award-winning Switch T-Track Battcar system cuts the stack height of mainsails on large yachts by half, making it much easier for crew to put on sail covers and to connect/disconnect halyards. This simple, yet sophisticated patented switch system neatly stacks cars side-by-side on top of the boom. The unique switch plate has no moving parts, ensuring an exceptionally reliable and efficient product. Available in 18, 26, 32, and 40 mm sizes for monohulls 11 m (37') to over 43 m (140'); multihulls 9 m (30') to over 27 m (90').

Switch track cuts stack height in half

- Neatly flakes mainsail on top of the boom; stores cars on parallel tracks.
- Headboard cars articulate, pass through switch for further stack height reduction (26 and 32 mm).
- Long switches available to accommodate more cars on boats with large sail areas.

Stand up to sun, salt, and time

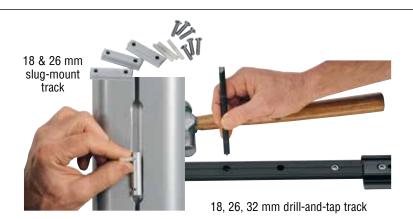
- 18 mm high-load, 26, 32, and 40 mm aluminum cars Hard Lube-anodized, UV-stabilized for durability.
- Standard 18 mm cars fiber-reinforced, UV-stabilized, lubricated composite for maximum protection and low wear.
- Aluminum track hardcoat-anodized for a long-lasting surface.
- Switch plate has no moving parts to break.

Materials For properties see pages

6061-T6 aluminum:Hard Lube-anodized cars; hardcoat-anodized track

Low-friction components

- Cars run on low-friction plastic slides.
- Switch plate with no moving parts minimizes friction.


Easy installation/removal of cars

- Gate tracks for 26, 32, 40 mm cars feature easy-to-remove fasteners to load/unload cars.
- 18 mm switch track uses screwpin stops and stop at masthead for easy car removal.

Optional Trysail Switch system reduces weight aloft

- Integrates trysail with mainsail switch systems; shares track.
- Cars switch automatically—only trysail cars travel onto the trysail track; mainsail cars pass through to switch and storage tracks.
- All track is hardcoat-anodized.
- Available in 26, 32, and 40 mm sizes.

Variety of mounting options

- 18 and 26 mm slug-mount track converts masts with sail grooves for mast-up installation. Boats under 12.2 m (40') use standard slug-mount track. Boats from 12.2 13.7 m (40' 45') require 18 mm high-load slug-mount track at full hoist and all reef point headboard locations. 18 mm systems available for round, flat, or wide flat mast grooves. Boats from 13.7 24.4 m (45' 80') use 26 mm slug-mount track. 26 mm available with flat mast groove slugs.
- 18, 26, 32 mm drill/tap track and switches fit masts without sail grooves; join track sections with splice links.
- 26, 32, and 40 mm flange track is available in bond and bolt-down versions. Bond track is joined to the mast with a structural
 adhesive to reduce weight aloft; eliminates the majority of track fasteners for lighter-weight system. Consult mast builder for
 bond track installation recommendations.

18 mm Switch **T-Track Battcar Systems**

Typical boat size:

18 mm: Monohulls: 11 - 13.5 m (37 - 45'); Multihulls: 9 - 10.5 m (30 - 35')

18 mm high-load:

Monohulls 13.5 - 15 m (45 - 50'); Multihulls 10.5 - 12 m (35 - 40')

About Switch T-Track Battcar systems: see feature pages at beginning of this section.

> Designed to work with batten receptacles from New Zealand's C-Tech Sailbattens, the pintles have shoulders that protect the threads from bending.

HEADBOARD CARS

HC7906

Cut car stack height in half by flaking the sail alternately to port and starboard of the boom.

WHY DO I WANT A SWITCH **BATTCAR SYSTEM?**

A Switch Battcar system cuts stack height in half, so putting on a sail cover or connecting/disconnecting your halyard is a much easier task. The patented system works by alternately dropping mainsail cars onto port and starboard storage racks. Headboard cars articulate and pass through the switch, reducing stack height even more.

HC7905

INTERMEDIATE CARS

Cars

		Length Width		dth	Weight		Max headboard thickness		Maximum sai Monohull			sail area Multihull		mum ig load	
Part No.	Description	in	mm	in	mm	OZ	g	in	mm	ft²	m²	ft²	m²	lb	kg
18 mm															
HC7906	Headboard car	7 3/16	198	1 21/32	42	12.8	359	9/16	14	450	40	325	30	700	318
HC7905	Intermediate car	2 1/2	63	1 21/32	42	1.6	45			450	40	325	30	300	136
HC8537	Batten car/10 mm stud	2 1/2	63	1 21/32	42	3.2	91			450	40	325	30	300	136
3905	Batten car/10 mm stud for C-Tech Batten	2 1/2	63	1 21/32	42	3.5	100			450	40	325	30	300	136
18 mm High	ı-Load (HL)														
3892	Battcar/M12 stud for C-Tech batten	2 1/2	63	1 11/16	42	4.8	135			610	55	500	45	600	272
HC7906HL	Headboard car	7 3/16	198	1 21/32	42	14.4	408	9/16	14	610	55	500	45	1600	725
HC7905HL	Intermediate car	2 1/2	63	1 21/32	42	3.2	91			610	55	500	45	600	272
HC7904HL	Batten car/12 mm stud	2 1/2	63	1 21/32	42	4.9	139			610	55	500	45	600	272
HC8537HL	Batten car/10 mm stud	2 1/2	63	1 21/32	42	4.8	136			610	55	500	45	600	272
3906	Batten car/10 mm stud for C-Tech Batten	2 1/2	63	1 21/32	42	4.8	136			610	55	500	45	600	272

18 mm Switch T-Track **Battcar Systems**

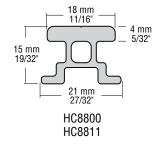
For masts with sail grooves, 18 mm slug-mount track uses a unique system that allows mast-up installation. Use high-load slug-mount tracks on boats over 12.2 m (40') at sail headboard locations at full hoist and headboard locations when sail is reefed. Drill/tap track and switches fit masts without sail grooves. Join drill/tap track sections with splice links. Order one per track section. Boats with larger sail areas should use long switches to accommodate more cars.

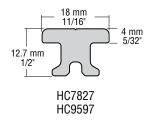
Mounting Kits and Endstops

Slug mounting kits are available for flat or round mast grooves. Order one kit per track section.

Switch track includes screwpin stops for easy car and sail removal below switch. Stop at masthead also included.

About Switch T-Track Battcar systems: see feature pages at beginning of this section.


Mounting Kits: Slug Mount


SLUG MOUNT

HC9106 HC9107 HC9108

HC7827

DRILL/TAP

Mounting slug Connector slug Flat mast groove gap Weight Weight Connector Lenath Lenath Min Max Part Mounting No. Description mm slugs/kit mm sluas/kit in in mm in ΟZ in ΟZ **Switch Mounting Kits** HC8918 Round mast groove 2 51 0.32 3 HC8919 Flat mast groove 1 3/4 45 0.28 3 5/16 8 7/16 8 11 HC8921 Wide flat mast groove 1 3/4 45 0.56 3 7/16 11 5/8 16 16 **Track Mounting Kits** Round mast groove HC9106 3/4 19 0.14 19 2 5/8 67 0.54 1 Round mast groove, extras* HC9702 19 0.14 10 3/4 HC9107 3/4 0.17 19 17 5/16 8 7/16 Flat mast groove 19 2 5/8 67 0.6 11 HC9703 8 7/16 11 Flat mast groove, extras* 3/4 19 0.17 5 10 5/16 0.94 HC9108 Wide flat mast groove 3/4 19 0.25 6 19 2 5/8 67 7/16 11 5/8 16 HC9704 Wide flat mast groove, extras* 3/4 19 0.25 10 7/16 11 5/8 16

Track

HUUN									
Part		Lenç	yth	Wid	dth	We	ight	Fasteners	Fastener spacing
No.	Description	in	mm	in	mm	0Z	g	mm	mm
Slug Mou	int								
HC8798	Switch/short	24	610	2 5/8	67	32	907	5	
HC8799	Switch/long	33 3/4	857	2 5/8	67	47	1336	5	
HC8800	T-Track	80 13/16	2051	27/32	21	26.7	758	5	100
HC8811	T-Track/high-load**	80 13/16	2051	27/32	21	26	748	5	50/100
Drill/Tap									
HC10417	Switch***	33 3/4	857	3	76	26.7	758	5	75
HC7827	3 m T-Track	118 1/8	3000	23/32	18	38.9	1106	5	75
HC9597	2 m T-Track/high load	78 3/4	2000	23/32	18	25.5	723	5	50
HC8230	Splice link	7/8	22	1/8	3.2	0.02	0.57		

^{**} Use HC8811 high-load track on upper part of mast to reinforce HL system headboard locations. Mount using 50 mm hole spacing at headboard location at full hoist and headboard location at each reef point. Reduce weight in other greas by alternating holes to 100 mm spacing.

*Switch may be shortened to 605 mm (23 13/16").

^{*}Extra slug kit for HC8811 track. Order one kit in addition to HC9106, HC9107 or HC9108 for sail headboard location at full hoist and one kit for each reefed headboard location.

26 mm, 32 mm Switch **T-Track Battcar Systems**

Patented Battcar switch systems cut sail stack height in half by automatically splitting cars onto two tracks.

Use HC8879 and HC8880 for headboard reefed position. See page 151. Gate track is removed to load and unload cars.

Spherical bushings let headboard cars pass through switch.

Typical boat size:

26 mm: Monohulls: 15 - 24 m (50 - 80');

Multihulls: 12 - 18 m (40 - 60')

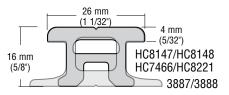
32 mm: Monohulls: 24 - 43 m (80 - 140'); Multihulls: 18 - 27 m (60 - 90')

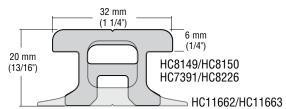
About Switch T-Track Battcar systems: see feature pages at beginning of this section.

Designed to work with batten receptacles from New Zealand's C-Tech Sailbattens, the pintles have shoulders that protect the threads from bending.

HC8099

INTERMEDIATE CARS





Cars

vais												!!			
Dort		Leng	th	Wi	dth	We	ight	Max headboard thickness		Maximum s Monohull			Multihull		imum 1g load
Part No.	Description	in	mm	in	mm	0Z	g	in	mm	ft ²	m²	ft²	m²	lb	kg
26 mm															
HC9045	Headboard car*	10 5/8	270	2 3/8	60	34.3	973	21/32	17	1730	160	1300	120	4500	2045
HC7493	Intermediate car	2 3/8	60	2 3/8	60	5.6	159			1730	160	1300	120	1000	454
HC7324	Batten car/12 mm stud	2 15/16	75	2 3/8	60	8.8	250			1730	160	1300	120	1500	680
HC7325	Reef car*	3 17/32	90	2 3/8	60	7.2	205			1730	160	1300	120	2100	952
HC8125	Tack car	3 17/32	90	4 3/8	111.2	14.4	409			1730	160	1300	120	3800	1723
3894	Battcar/M12 stud for C-Tech batten	2 15/16	75	2 3/8	60	9.1	257			1730	160	1300	120	1500	680
3895	CRX Battcar/M12 stud for C-Tech batten	4 1/2	115	2 3/8	60	12.6	357			1730	160	1300	120	1500	680
32 mm															
HC9046	Headboard car*	11	280	2 3/4	70	44.7	1266	21/32	17	3780	350	2400	225	8000	3628
HC7322	Intermediate car	2 15/16	75	2 3/4	70	10.4	297			3780	350	2400	225	2800	1270
HC8098	Batten car/12 mm stud	3 17/32	90	2 3/4	70	11.2	319			3780	350	2400	225	4000	1814
HC7316	Batten car/14 mm stud	3 17/32	90	2 3/4	70	11.2	319			3780	350	2400	225	4000	1814
HC8076	Reef car*	4 17/32	115	2 3/4	70	14.4	409			3780	350	2400	225	6000	2722
HC8099	Tack car	4 17/32	115	5 3/16	132	29.2	830			3780	350	2400	225	7900	3583
3896	Battcar/M12 stud for C-Tech batten	3 17/32	90	2 3/4	70	17.1	487			3780	350	2400	225	4000	1814
3897	Battcar/M14 stud for C-Tech batten	3 17/32	90	2 3/4	70	17.2	489			3780	350	2400	225	4000	1814
Headbo	ard Plates														
3876	Web-on headboard plate * *	10 15/16	278	9/16	14	33.8	958.4	1/2	13				Fits H	C9045/H	C9046
3877	Web-on headboard plate/flat-top**	11 1/16	281	9/16	14	43	1343	1/2	13				Fits H	C9045/H	C9046

Switch T-Track Battcar Systems: 26, 32 mm

Fastener

3886

Track Mounting Kits: Slug-Mount

Part			ng slug gth	Mounting slugs/	Weight (kit)		Fasteners (included)	
No.	Description	in	mm	kit	0Z	g	mm	Track
3884	Track slug-mounting kit/flat mast groove	1	25	40	28	790	40 x M6 x 1.0 x 18 mm	HC7466, HC8879

Endstop Kits: Slug-Mount

	Part		Mountin lenç		Mounting slugs/	Traci lengt		Wei (k		Fasteners (included)
	No.	Description	in	mm	kit	in	mm	0Z	g	mm
Ī	3885	Endstop kit/flat mast groove*	1 13/32	36	1			2.25	64	2 x M6 x 1.0 x 35 mm
	3886	Gate track mounting kit/flat mast groove**	1	25	4	11 13/16	300	9.25	260	4 x M6 x 1.0 x 18 mm

*Includes 1522ASSY. **Includes HC8221.

Track & Accessories

Part		Lenç	jth	Wid	lth	Weight		Fasteners	spacing
No.	Description	in	mm	in	mm	0Z	g	mm	mm
26 mm									
3887	Flange track/bolt-down*	74 3/4	1899	1 1/32	26	41.6	1180	6	50
3888	Flange track/bond*	153 1/2	3899	1 1/32	26	88.2	2500	6	3850
HC8220	Switch*	25 1/4	641	4	102	43.1	1225	6	
HC8147	500 mm storage track*	19 11/16	500	1 1/32	26	10.2	291	6	50
HC8148	725 mm storage track*	28 17/32	725	1 1/32	26	14.8	419	6	50
HC10060	725 mm double storage track*	28 17/32	725	3 11/16	93	57.2	1623	6	50
HC7466	3 m T-Track*	118 1/8	3000	1 1/32	26	61.1	1736	6	75
HC8879	2 m T-Track/high-load*	78 3/4	2000	1 1/32	26	40.3	1141	6	50
HC8221	Gate track*	11 13/16	300	1 1/32	26	6.1	174	6	75
HC8222	Splice link			1 1/32	26	0.1	3		
1522ASSY	Endstop	2 5/32	55	1 17/32	39				
32 mm									
HC7382	Switch*	28 1/2	724	5	127	72.8	2068	8	
HC8149	800 mm storage track*	31 1/2	800	1 1/4	32	25.6	728	8	50
HC8150	1025 mm storage track*	40 11/32	1025	1 1/4	32	32.8	933	8	50
HC7391	3 m T-Track*	118 1/8	3000	1 1/4	32	96.2	2734	8	75
HC8880	2 m T-Track/high-load*	78 3/4	2000	1 1/4	32	63.1	1790	8	50
HC8226	Gate track*	11 13/16	300	1 1/4	32	9.6	273	8	75
HC8227	Splice link					0.2	5		
HC11662	Flange track/bolt-down*	74 3/4	1899	1 1/4	32	62.1	1760	8	50
HC11663	Flange track/bond*	153 1/2	3899	1 1/4	32	136.2	3860	8	3850
548ASSY	Endstop	2 27/32	72	2 1/32	52				
3948	300 mm Double Storage Track*	11 13/16	300	4 3/8	112	29.7	844		50
3949	500 mm Double Storage Track*	19 11/16	500	4 3/8	112	50	1417		50

^{*}Available in black or clear anodized.

HC10060

40 mm Switch T-Track Battcar Systems

Patented Battcar switch systems cut sail stack height in half by automatically splitting cars onto two tracks.

Typical boat size:

Monohulls: over 43 m (140'); Multihulls: over 27 m (90')

About Switch T-Track Battcar systems: see feature pages at

beginning of this section.

REPLACEMENT STUDS

3929

3930

HEADBOARD PLATE

BATTEN CARS

INTERMEDIATE CAR

3923

REEF CAR

3922

TACK CAR

CAR

SW-RP90 CUSTOM, Courtesy of Southern Wind Shipyard

Part		Ø		
No.	Description	in	mm	Fits
3929	18 mm toggle/stud	23/32	18	3926, 3931, 3932
3930	16 mm toggle/stud	5/8	16	3926, 3931, 3932

Cars

									Maximun		Maxi	mum	
Part		Lenç	jth	Wi	dth	We	ight	Mond	Monohull Multihull				g load
No.	Description	in	mm	in	mm	0Z	g	ft²	m²	ft²	m²	lb	kg
3921	Non-locking headboard car assembly	13 3/4	349	3 1/2	89	151	4280	3780 +	350 +	2400 +	275 +		
3924	Intermediate car	3 21/32	93	3 1/2	89	14	392	3780 +	350 +	2400 +	275 +	3549	1613
3932	Batten car/16 mm stud	5 1/32	128	3 1/2	89	34.5	979	3780 +	350 +	2400 +	275 +	5940	2700
3931	Batten car/18 mm stud	5 1/32	128	3 1/2	89	35.3	1000	3780 +	350 +	2400 +	275 +	5940	2700
3925	CRX roller batten car	6 1/16	153	3 1/2	89	37	1045	3780 +	350 +	2400 +	275 +	5940	2700
3926	Universal batten car	5 1/32	128	3 1/2	89	22	617	3780 +	350 +	2400 +	275 +	5940	2700
3923	Reef car	6 1/16	153	3 1/2	89	30	843	3780 +	350 +	2400 +	275 +	8998	4090
3922	Tack car	6 1/16	153	7 1/4	184	81	2303	3780 +	350 +	2400 +	275 +	13200	6000
Headbo	ard Plate												
3920	Web-on headboard plate	13 11/16	348	5/8	16	70.2	1990						

Switch T-Track Battcar Systems: 40 mm

Trysail Switch System

The Trysail Switch allows the mainsail and trysail to share a single track, greatly reducing weight aloft. This asymmetrical switch installs above the standard system and provides a crossover for trysail cars to utilize the mainsail track. The trysail cars are loaded at deck level and travel past the gooseneck and flaked mainsail onto the mainsail track. Switching of the cars is totally automatic; only trysail cars can travel onto the trysail track, while the mainsail cars pass through to the standard switch and storage tracks.

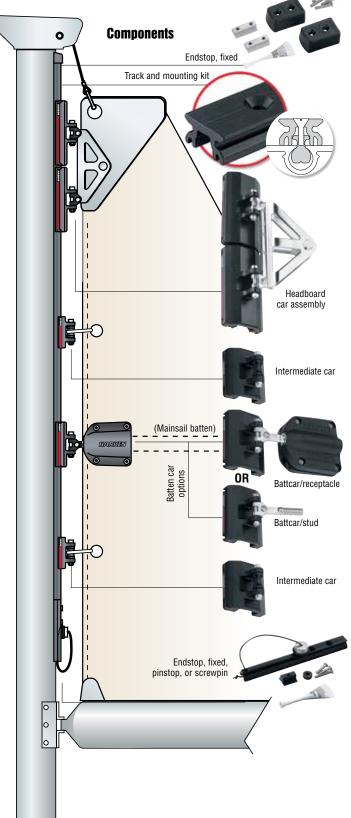
Track

Use standard Switch system T-Track (see pages 149 and 151).

The track's compound bend wraps around the mast section so cars pass next to the mainsail cars on the storage tracks, past the gooseneck and down to the deck. There crew can safely load the trysail onto the track and raise the sail, leaving the mainsail flaked on the boom.

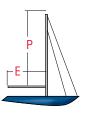
The compound track bend is determined by installer. Cars must not be under load in curved section.

About Switch T-Track Battcar systems: See feature pages at beginning of this parties.


The Trysail Switch system integrates with the Switch T-Track Battcar system by sharing a single mast track to reduce weight aloft.

Part		Lenç	jth	Wid	th	Wei	ight	Fasteners	Maxi workir	mum ig load	
No.	Description	in	mm	in	mm	0Z	g	mm	lb	kg	Fits track
26 mm											
C9492	Starboard Trysail Switch*	14 1/2	368	4 25/32	121	27	762	6			HC7466, HC8879
C9493	Port Trysail Switch*	14 1/2	368	4 25/32	121	27	762	6			HC7466, HC8879
C9494	Car body*	2 3/8	60	1 1/32	26	5	143		1001	454	HC7466, HC8879
C10539	Push-button endstop	3 15/16	100	1 1/32	26	3	79	6	435	197	HC7466, HC8879
32 mm											
C9340	Starboard Trysail Switch*	16	406	5 7/8	149	43	1222	8			HC7391, HC8880
C9341	Port Trysail Switch*	16	406	5 7/8	149	43	1222	8			HC7391, HC8880
C9342	Car body*	2 15/16	75	3 1/32	77	11	309		2800	1270	HC7391, HC8880
C10419	Push-button endstop	5 29/32	150	1 17/64	32	4.6	130	8	625	283	HC7391, HC8880
40 mm											
3934	Starboard Trysail Switch*	20	508	7 7/16	189	95	2692	10			3939, 3940, 3941
3935	Port Trysail Switch*	20	508	7 7/16	189	95	2692	10			3939, 3940, 3941
3928	Trysail car*	3 21/32	93	3 21/32	93	14	397		3547	1613	3939, 3940, 3941
3933	Push-button endstop*	5 15/16	150	2 3/8	60	9	269	10			3939, 3940, 3941

Contact Harken to request lead time.


^{*}Available in black or clear-anodized

Ordering Battcar Systems

1. Determine System Size

The four sizes, systems AA, A, B, and C, are based on sail area (pages 132-139). If you need to reduce car stack height on mast, see **Switch T-Track Battcar Systems** (pages 140-147).

Mainsail Area P x E x .5

	Ma	ximum	sail are	a	Typical boat length						
System	Mon	ohull	Multi	hull	Mo	nohull	Multihull				
size	ft²	m²	ft²	m²	ft	m	ft	m			
AA	350	32	275	25	a 37	a 11.3	a 30	a 9.1			
Α	600	56	500	46	37 - 50	11.3 - 15.2	30 - 40	9.1 - 12.2			
В	900	83	700	65	50 - 60	15.2 - 18.3	40 - 50	12.2 - 15.2			
C	1940	180	1510	140	60 - 90	18.3 - 27	50 - 70	15.2 - 21			

2. Determine Track Quantity and Type

Use **Mainsail Luff Length** chart on each system page to determine number of track sections.

Slug-mount: most common. Requires 1 slug-mount kit per track section. Select slug that matches the mast's boltrope groove shape.

Drill-tap: for masts without a boltrope groove. Requires 1 splice link at each track joint.

3. Choose Endstop Kit

Quick-release: includes screwpin or pinstop endstop for bottom of mast and fixed endstop for the top.

Fixed: Includes two fixed endstops.

4. Choose Cars

Order 1 headboard, 1 Battcar for every full batten, and use the **Intermediate Car Chart** to determine number of intermediate care.

CB system: all captive ball bearing components. Lowest friction system for fast sail hoists, douses, and reefs.

Combination system: CB headboard and Battcars, Slider intermediate cars. Reduces cost but uses CB in the most critical load areas.

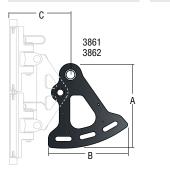
Slider system: all slider components. Raise and lower sails without jamming the sail in the groove.

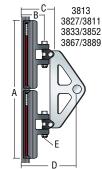
Intermediate Cars

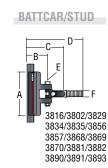
Distance betw	Intermediate cars	
ft	m	between battens
8 or less	2.4 or less	1
9 - 13	2.7 - 4	2
14 - 16	4.3 - 4.9	3

^{*}Boats without full battens should use 1 intermediate CB or slider car per 1.2 m (4') and no Battcars.

5. Contact


If you have questions, please contact your dealer or Harken Technical Service.




Battcar Dimensions

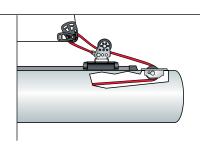
HEADBOARD PLATE


HEADBOARD CAR ASSEMBLY

BATTCAR/RECEPTACLE

INTERMEDIATE CAR, REEF CAR, UNIVERSAL BATTCAR

3814/3815 1777/3828 3812/3831/3836 3859/3860/3863 3871/3872/3873 3883


Dimensions (measured from aft face of mast)

			A B C D					F				
Part No.	Description	A		B		C				Piı		Stud Ø
	Description	in	mm	in	mm	in	mm	in	mm	in	mm	mm
3813	CD beadboard our assembly	5 3/16	132	1	25	1 13/16	46				5	
3814	CB headboard car assembly Slider intermediate car	1 3/4	44	15/16	24	1 13/10	40	3/4	19		5	
3815	CB intermediate car	2 3/16	56	13/10	25			3/4	19		5	
3816	CB Battcar/10 mm stud	2 3/16	56	1	25	1 13/16	46	3 5/16	84		5	10
	A Slider	2 3/10	30	'	23	1 13/10	40	3 3/10	04			10
3827	Headboard car assembly	6	153	1 1/16	27	2 1/8	54	3 11/16	94	3/16	5	
1777	Low-load intermediate car	2	51	1 1/8	28	2 1/0	54	3/4	19	3/16	5	
3828	Intermediate car	1 3/4	44	1 1/16	27			21/32	17	3/16	5	
3802	Battcar/10 mm stud	1 3/4	44	1 1/16	27	2 1/8	54	21/32	17	3/16	5	10
3803	Battcar/40 mm receptacle	1 3/4	44	1 1/16	27	2 1/8	54	5 1/8	130	3/16	5	10
System	,	1 3/4	44	1 1/10	21	2 1/0	54	3 1/6	130	3/10	<u> </u>	
3811	Headboard car assembly	8 3/8	213	1 3/8	35	2 1/4, 2 7/8*	57. 73*	4	102	3/16	5	
3889	Headboard car assembly/quick-release	9 1/2	240	1 3/8	35	2 5/8	68	4 5/16	102	1/4	6	
3812	Intermediate car	2 1/4	57	1 3/8	35	2 3/0	00	3/4	109	3/16	5	
3829	Battcar/10 mm stud	2 7/8	73	1 3/8	35	2 1/4	57	3 11/16	94	3/16	5	10
3830	Battcar/40 mm receptacle	2 7/8	73	1 3/8	35	2 7/8	73	5 3/4	146	3/16	5	10
3831	Universal Battcar	2 7/8	73	1 3/8	35	2 1/0	73	3/4	19	3/16	5	
3881	Battcar/12 mm stud	2 7/8	73	1 3/8	35	2 3/4	69	3 7/8	99	1/4	6	12
3882	Long batten car/12 mm stud	4 1/8	105	1 3/8	35	2 3/4	69	3 7/8	99	1/4	6	12
3883	Reef car	4 1/8	105	1 3/8	35	2 3/4	09	3/4	19	1/4	6	12
	1 B Slider	4 1/0	103	1 3/0	33			3/4	13	1/4		
3833	Headboard car assembly	7 1/2	190	1 1/4	32	2 5/16	59	4 5/8	119	1/4	6	
3836	Intermediate car	2 3/16	56	1 1/4	32	2 3/10	J9	4 3/0	119	1/4	6	
3834	Battcar/10 mm stud	2 3/16	56	1 1/4	32	2 5/16	59	3 9/16	91	1/4	6	10
3835	Battcar/12 mm stud	2 3/16	56	1 1/4	32	2 5/16	59	3 3/4	96	1/4	6	12
System		2 3/10	30	1 1/4	32	2 3/10	Jə	3 3/4	90	1/4		12
3852	Headboard car assembly	10 1/2	267	1 9/16	39	3 1/16	78	4 1/16	102	3/8	10	
3863	Intermediate car	2 9/16	68	1 9/16	39	3 1/10	70	3/4	19	1/4	6	
3856	Battcar/10 mm stud	4 5/16	109	1 9/16	39	3 1/16	78	4 3/8	111	3/8	10	10
3857	Battcar/12 mm stud	4 5/16	109	1 9/16	39	3 1/16	78	4 3/8	111	3/8	10	12
3859	Universal Battcar	4 1/4	108	1 9/16	39	0 1/10	70	1	26	3/8	10	12
3860	Reef car	5 3/16	132	1 9/16	39			1	26	3/8	10	
3861	Web-on headboard plate	6 13/16	172	6 3/8	161	4 7/8	124			0,0	10	
3862	Web-on headboard plate/flat-top	5 13/16	147	6 3/16	157	5 23/32	145					
3893	Battcar/M12 stud for C-Tech batten	4 1/4	108	1 9/16	39	3	78	4 1/2	114	3/8	10	12
System		, .		. 6, . 6			,,,	,		0,0		
3867	Headboard car assembly	18 5/8	473	2	51	3 5/8	92	5	126	1/2	12	
3871	Intermediate car	3 3/4	95	2	51			1	26	3/8	10	
3868	Battcar/12 mm stud	5 3/8	136	2	51	3 5/8	92	5 1/16	128	1/2	12	12
3869	Battcar/14 mm stud	5 3/8	136	2	51	3 5/8	92	5 1/16	128	1/2	12	14
3870	Battcar/16 mm stud	5 3/8	136	2	51	3 5/8	92	5 1/16	128	1/2	12	16
3872	Universal Battcar	5 3/8	136	2	51			1 5/16	33	1/2	12	
3873	Reef car	9 1/8	231	2	51			1 5/16	33	1/2	12	
3890	Battcar/M12 stud for C-Tech batten	5 3/8	136	2	51	3 5/8	92	5 5/16	135	1/2	12	12
3891	Battcar/M14 stud for C-Tech batten	5 3/8	136	2	51	3 5/8	92	5 5/16	135	1/2	12	14
						, -						

Furling Mainsail Outhaul Systems

Use furling outhaul cars with in-mast or behind-themast furlers on boats up to 13.5 m (45'). Sheave carriers pivot side-to-side to accommodate changing lead angles. Systems have 2:1 purchase and ride on cars with Torlon® ball bearings. A deadend outhaul shackle is included.

Cars have axle-bearing sheaves.

Torlon is a registered trademark of Solvay Advanced Polymers L.L.C.

Part		Shea Ø	ive	Len	gth	We	ight	C: wid		Maxi workin	mum ig load	M: sail		
No.	Description	in	mm	in	mm	OZ	g	in	mm	lb	kg	ft²	m²	Track
1648	CB outhaul car	2	51	5 1/4	133	24	680	2 3/4	70	2300	1043	300	28	R27
3076	CB outhaul car	2 1/2	64	5 1/4	133	34	964	3 3/8	85	3000	1361	425	40	R32
3096	CB outhaul car	2 15/16	75	7 1/4	184	62	1758	3 3/8	85	4500	2041	550	51	R32

See page 277 for replacement balls.

Lazy Jacks

Lazy Jacks contain mainsails while reefing and dousing. They work extremely well with full-batten mains, but can also be used with conventional sails.

Part		Boat I	ength	Boom	length	Mainsai	Mainsail luff length		
No.	Description	ft	m	ft	m	ft	m		
252	Small	21 - 28	6.4 - 8.5	7 - 13	2.13 - 3.96	21 - 32	6.4 - 9.75		
253	Medium	27 - 37	8.2 - 11.3	10' 6" - 16	3.2 - 4.9	32 - 42	9.75 - 12.8		
254	Large	35 - 42	10.7 - 12.8	12 - 16	3.7 - 4.9	35'7" - 48	10.88 - 14.63		

Harken Vang-Master

Harken is now collaborating with Marine Products Engineering to offer Vang-Master rigid pneumatic boom vangs. Vang-Master boom vangs use air pressure to provide extension force to hold the boom up, without the need for metal springs. This reduces parts and weight while keeping operation squeak free, providing an infinitely adjustable, turnkey solution for maintaining optimal mainsail shape. Construction is hardcoat-anodized 6061-T6 aluminum, making them light and strong. Tubing and end fittings are threaded together eliminating fasteners and dissimilar metals to reduce corrosion.

Harken Vang-Masters are designed to be easy to install. Options available are external purchase systems which feature Harken hardware exclusively. They come pre-measured, spliced and finished with line specifically-selected for the application.

Harken distribution makes the vangs easy to obtain, while offering fast turnaround on spare parts and technical service.

Vang-Masters are available in eight standard sizes for boats 5-17 m (18-56 ft). Stainless steel mast and boom fitting and custom lengths are also available. Contact Harken for a price and lead time.

Purchase systems are available for each Vang-Master size with 4:1 or 6:1 mechanical advantage in singleor double-ended configurations.

Part			Pin center length (closed)		Pin center length (open)		Stroke		Weight		Pin Ø		Jaw width		Maximum return force	
No.	Description	in	mm	in	mm	in	mm	lb	kg	in	mm	in	mm	lb	kg	
VM13240	Vang-Master 1	32	813	40	1016	8	203	2.75	1.25	3/8	10	1/4	6	350	159	
VM24353	Vang-Master 2	43	1092	53	1346	10	254	3.4	1.54	3/8	10	1/4	6	350	159	
VM33444	Vang-Master 3	34	864	44	1118	10	254	4.35	1.97	1/2	12.7	1/4	6	500	227	
VM44656	Vang-Master 4	46	1168	56	1422	10	254	5.5	2.49	1/2	12.7	1/2	12	500	227	
VM54860	Vang-Master 5	48	1219	60	1524	12	305	8.3	3.76	1/2	12.7	1/2	12	800	363	
VM66274	Vang-Master 6	62	1575	74	1880	12	305	10	4.54	5/8	15.9	5/8	16	800	363	
VM76274	Vang-Master 7	62	1575	74	1880	12	305	12.9	5.85	5/8	15.9	5/8	16	1500	680	
VM87385	Vang-Master 8	73	1854	85	2159	12	305	14.6	6.62	5/8	15.9	5/8	16	1500	680	

Ordering Vang-Master

Standard Vang-Master rigid vangs are available for boats with vang fittings on the boom and mastbase. If your boat is not equipped with vang fittings, or if fitting width or pin diameter will not fit jaw and pin sizes listed in the chart on previous page, contact Harken for information on a custom vang.

1. Determine Vang Size

Vang-Master sizes are based on boat sailplan and PCLC /PCLO dimensions (PCLC= distance between the center of unit mounting pins at mast and boom with unit completely closed. PCLO=distance between the center of unit mounting pins with unit completely open.)

For PCLC, measure distance between hole centers with the boom at an attitude below which you never want it to go.

For PCLO, measure the distance between these holes with the boom as high as you would ever want it to go.

Select the correct unit size using from the "Typical Boat Length" Chart Select the stroke size that fits your range from the "Pin Length/Stroke" Chart

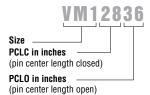
2. Select Purchase System

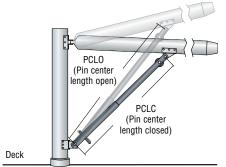
Standard purchase systems are available for each Vang-Master size with 4:1 or 6:1 mechanical advantage in single- or double-ended configurations.

3. If Required: Select Mast And Boom Fittings

Determine if a rounded or flat fitting will provide the most integral boom mount.

Use the chart below to match the Vang-Master Unit you have selected with the corresponding boom and mast fittings.


Select the correct fasteners (sold separately)


Use the chart information or the fitting itself to determine the correct hole spacing and location before drilling.

Typical Boat Lengths:

VM1 & VM2: 5.5 - 7.9 m (18' - 26') VM3 & VM4: 7.6 - 11 m (25' - 36') VM5 & VM6: 10.7 - 14 m (35' - 46') VM7 & VM8: 13.7 - 17.1 m (45' - 56')

Part Numbers

Stock Applications

Vang-Masters sized for production models are detailed below.

Please note, there may be rigging variation due to Class rule changes or equipment replacement.

VM-1

Moore 24 Hot Foot 2 Ultimate 20 Santana 20

VM-2

J/80 Cal 25 Ultimate 24 B-25 Capri- 25 J/24 Merit 25 M-24

VM-3

Cal 29 Catalina 27 Erickson 27 Catalina 30 J/27 Olson 30 Santana 3030

VM-4

Catalina 34
Cal 28
Cal 27
Islander Bahama 30
J/29
J/30
Evelyn 32
J/105
J/100
J/133
J/33
Pearson 30
Hunter 28
Tartan 10
Cal 31

J/100 J/133 J/33 Pearson 30 Hunter 28 Tartan 10 Cal 31 Ranger 33 Pearson 34 Sabre 30 Hobbie 33 Isladner 36 Antrim 27 Soverel 33 Flying Tiger F-10 Henderson 30

Farr Mumm 30 M-32

VM-5

Erickson 35 Santana 35 Hunter 34 Hans Christian 33 C & C 38 Catalina 38 Catalina 36 J/35 J/111 J/40 J/37 J/109 Express 37 Tartan 35 Valiant 42 Peterson 44 Benetau First 38 Bristol 35 Grand Soleil 39 Island Packet 35 Hinckley Bremuda 40 Hallberg Rassy 42

Cabo Rico 38 Passport 40 Sabere 42 Antrim 40 Cf 40

Farr 400 Kirby 25 Summit King 40 Farr Mumm 36 Summit 35 Soto 40

Benetau First 36.7

Farr 40

VM-6

Catalina 400 Catalina 42 Cal 40 Cal 39 J/122 J/46 X- Yacht 45 J/120 X- Yacht 38 Swan 44 Swan 43 Cabr Rico 42 Passport 42 Moody 46 Dufour 45 Hylas 42 Cheov Lee Offshore 48 Bristol 47 Wauquiex 46 J/125 Dk 46 Sydney 40 Benetau First 40.7

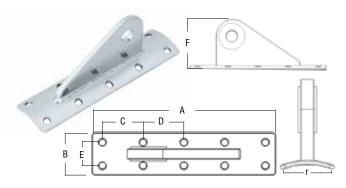
VM-7

Catalina 47
Santa Cruz 50
Lidgard 45
Morris 46
Tp- 52
X- Yacht 512
Swan 48
Swan 46
Passport 54
Columbia 50
Dufour 520
Hylas 54
Andrews 56

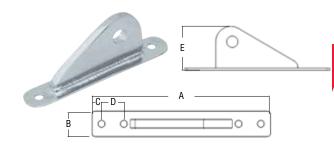
VM-8

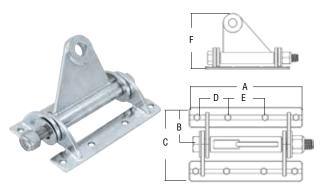
Jeanneau 57 Santa Cruz 52 Santa Cruz 70 Andrews 70

Vang-Master Purchase Systems


Part No.	Description	Purchase	Includes	Use with
7500	4:1 Single-ended 40 mm Carbo	4:1	(1) 2655 fiddle, (1) 2658 fiddle, 6 mm line	VM1, VM2, VM3
7501	4:1 Double-ended 40 mm Carbo	4:1	(1) 2638 double, (3) 2636 single, 6 mm line	VM1, VM2, VM3
7502	6:1 Single-ended 40 mm Carbo	6:1	(1) 2640 triple, (1) 2613 triple, 6 mm line	VM1, VM2, VM3
7503	6:1 Double-ended 40 mm Carbo	6:1	(1) 2640 triple, (1) 2638 double, (2) 2636 single, 6 mm line	VM1, VM2, VM3
7504	4:1 Single-ended 57 mm Carbo	4:1	(1) 2621 fiddle, (1) 2676 fiddle, 8 mm line	VM4, VM5, VM6
7505	4:1 Double-ended 57 mm Carbo	4:1	(1) 2602 double, (3) 2600 single, 8 mm line	VM4, VM5, VM6
7506	6:1 Single-ended 57 mm Carbo	6:1	(1) 2604 triple, (1) 2630 triple, 8 mm line	VM4, VM5, VM6
7507	6:1 Double-ended 57 mm Carbo	6:1	(1) 2604 triple, (1) 2602 double, (2) 2600 single, 8 mm line	VM4, VM5, VM6
7508	4:1 Single-ended 75 mm Carbo	4:1	(1) 2690 fiddle, (1) 2697 fiddle, 10 mm line	VM7, VM8
7509	4:1 Double-ended 75 mm Carbo	4:1	(1) 2662 double, (3) 2660 single, 10 mm line	VM7, VM8
7510	6:1 Single-ended 75 mm Carbo	6:1	(1) 2664 triple, (1) 2686 triple, 10 mm line	VM7, VM8
7511	6:1 Double-ended 75 mm Carbo	6:1	(1) 2664 triple, (1) 2662 double, (2) 2660 single, 10 mm line	VM7, VM8

Vang-Master Accessories


Harken offers Vang-Master boom fittings, mast fittings and pumps to accompany the vangs. The stainless-steel fittings can be easily mounted, pivoting like a hinge to fit the mast. Sturdy hardware fits the boom appropriately for easy Vang-Master connection.


Lezyne stand-up and hand-held pumps fit naturally to the Vang-Master Schrader valve, helping adjust boom height and resistance level.

ROUNDED BASE BOOM FITTINGS

FLAT BASE BOOM FITTINGS

PIVOING MAST FITTINGS

			ener ize	No. of Fasteners	-	in Ø		ggle idth							
Part No.	Description	in	mm		in	mm	in	mm	Α	В	C	D	E	F	r
Vang-Mas	ter Fittings														
VMB12	Rounded base boom fitting — units 1 & 2	1/4	6.35	8	3/8	9.5	1/4	6.35	5	1 1/2	1 3/8	1 1/4	3/4	1 3/8	1 3/4
VMB34	Rounded base boom fitting — units 3 & 4	1/4	6.35	10	1/2	12.7	1/4	6.35	6 1/2	1 5/8	1 7/16	-	1 1/8	2 1/8	1 3/4
VMB56	Rounded base boom fitting — units 5 & 6	1/4	6.35	10	1/2	12.7	3/8	12.7	6 1/2	1 5/8	1 7/16	-	1 1/8	2 1/4	1 3/4
VMBF12	Flat base boom fitting — units 1 & 2	3/16	4.8	2	3/8	9.5	1/4	6.35	4	3/4	3/8	-	1 3/8	-	-
VMBF34	Flat base boom fitting — units 3 & 4	1/4	6.35	4	1/2	12.7	1/4	6.35	7	1	3/8	7/8	2 1/8	-	-
VMBF56	Flat base boom fitting — units 5 & 6	1/4	6.35	4	1/2	12.7	3/8	9.5	7	1	3/8	7/8	2	-	-
VMM12	Pivoting mast fitting — units 1& 2	1/4	6.35	3	3/8	9.5	1/4	6.35	4 1/4	7/8	2 5/8	1 3/4	-	2 1/4	-
VMM34	Pivoting mast fitting — units 3 & 4	1/4	6.35	4	1/2	12.7	1/4	6.35	4 3/4	1	3 1/2	1 3/8	1 1/4	2 7/8	-
VMM56	Pivoting mast fitting — units 5 & 6	1/4	6.35	4	1/2	12.7	1/2	12.7	5 1/2	1	3 5/8	1 1/2	1 7/8	3 1/2	_

PUMPS

		W	eight eight	Hei (clos						
Part No.	Description	0Z	g	in	mm					
Vang-Master Pumps										
VMP2	Vang-Master pump/hand pump/Aluminium — Black	5.3	150	11 4/5	300					
VMP3	Vang-Master pump/floor drive/Steel — Red	60	1700	25	635					

The rigid vang that's easier to use just got easier to specify and buy.

Introducing Vang-Master from Harken.

Harken and Marine Products Engineering have teamed up to offer Harken Vang-Master rigid mechanical vangs. Yes, air to hold booms up. No fluid or hoses. Yes, limitless adjustment. No springs or squeaks. And yes, external purchase systems with line pre-measured and spliced to 100% Harken hardware.

Harken Vang-Masters come in four cylinder diameters and with Harken tech support, spare parts, and accessories. For the perfect fit: compare your mast and boom fitting pin-to-pin measurement with the menu of build lengths available in this catalog.

Replacing aging vangs is easier now. We're pumped!

Carbo Racing Foil

The engineering resins in these strong, lightweight head foils offer significant advancements over the weaker PVC materials used by other manufacturers. The low-friction twin headsail grooves are ultra-smooth, allowing hoists, douses, and headsail changes to be easily and efficiently executed. Impact resistance is unmatched, with far less foil damage from loaded spinnaker poles, especially in cold weather. Heat has little effect on stiffness.

Foils are UV protected and easy for the trimmer to see. For mast-up installation, simply uncoil the foil and snap onto the stay.

Aluminum Chafe Guard

An aluminum chafe guard keeps spinnaker sheets from damaging the foil during high-speed jibes. Testing shows this guard weighs the same as aramid fiber or composite, and is impervious to wear, unlike UHMW plastic tape which wears away quickly. A Harken chafe guard is included free with the purchase of a 7000, 7001, or 7002 kit.

Trim cap

Feeder for smooth hoists: Funnel-shaped stainless feeder smoothly guides boltrope into headfoil for fast hoists.

Prefeeder: Hardcoat-anodized, PTFE-coated aluminum rollers spin freely on low-friction bushings.

Kit includes prefeeder.

Actual size Unit 3 Unit 2 Unit 1 Unit 0

7000.30 7001.30 7002.30

Invictus, Jeanneau	Sun	Fast 3600,	11.25 m	(36'10"),	Daniel	Andrieu d	design
@ Rilly Black							

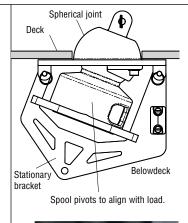
			wire		rod	Extrus		Max he		Space			Ision		ystem	Luff tape	
Part		,	Ø		Ø	leng	tn	len	gtn	len	gtn	wei	ignt	weig	jnt^	size**	
No.	Description	in	mm	dash	mm	ft/in	m	ft/in	m	ft/in	m	lb/ft	kg/m	lb	kg	in	mm
7000.9M	Unit 0	1/4	6	-10	6.35	29' 6"	9	33' 6"	10.2	3' 3"	1	0.102	0.152	3.29	1.5	#5 (5/32)	4
7000.12M	Unit 0	1/4	6	-10	6.35	39' 4"	12	43' 4"	13.2	3' 3"	1	0.102	0.152	4.29	1.95	#5 (5/32)	4
7000.15M	Unit 0	1/4	6	-10	6.35	49' 2"	15	53' 2"	16.2	3' 3"	1	0.102	0.152	5.3	2.41	#5 (5/32)	4
7001.12M	Unit 1	5/16	8	-17	8.38	39' 4"	12	43' 4"	13.2	3' 3"	1	0.162	0.241	6.99	3.18	#6 (6/32)	5
7001.16M	Unit 1	5/16	8	-17	8.38	52' 6"	16	56' 5"	17.2	3' 3"	1	0.162	0.241	9.13	4.14	#6 (6/32)	5
7001.20M	Unit 1	5/16	8	-17	8.38	65' 7"	20	69' 7"	21.2	3' 3"	1	0.162	0.241	11.25	5.1	#6 (6/32)	5
7002.16M	Unit 2	3/8	10	-25	10.31	52' 6"	16	56' 5"	17.2	3' 3"	1	0.185	0.275	10.43	4.73	#6 (6/32)	5
7002.20M	Unit 2	3/8	10	-25	10.31	65' 7"	20	69' 7"	21.2	3' 3"	1	0.185	0.275	12.9	5.83	#6 (6/32)	5
7002.24M	Unit 2	3/8	10	-25	10.31	78' 9"	24	82' 9"	25.2	3' 3"	1	0.185	0.275	15.29	6.93	#6 (6/32)	5
7003.24M	Unit 3	7/16	11	-30	11.1	78' 9"	24	82' 9"	25.2	3' 3"	1	0.245	0.365	20.08	9.1	#6 (6/32);#7 (7/32)	5;6
7003.28M	Unit 3	7/16	11	-30	11.1	91' 10"	28	95' 9"	29.2	3' 3"	1	0.245	0.365	23.31	10.57	#6 (6/32);#7 (7/32)	5;6
7006	Carbo racing foil prefeeder													3 oz	85 g		
7000.30	Unit 0 chafe guard					3' 3"	1							2.5 oz	70 g		
7001.30	Unit 1 chafe guard					3' 3"	1							2.9 oz	82 g		
7002.30	Unit 2 chafe guard					3' 3"	1							3 oz	85 g		

7006

Small Boat Furling Components: Underdeck

Underdeck Furlers

Small Boat underdeck furling units are ideal for sportboats and daysailers from 4.8 - 9 m (16 - 30'). The drum is located beneath the deck, lowering the tack height for maximized sail area. The single through-deck ball joint provides a low-profile, nearly watertight system that aligns the spool to the headstay. Like all Small Boat furlers, the underdeck furler is for furling only, not reefing.


An optional hoistable ball bearing halyard swivel can be installed on the headstay so the sail can be raised or lowered without removing the headstay. See page 160.

Tack Adapter Tangs

Stainless steel tack adapter tangs are used to adapt clevis pin diameters on headstays to the standard clevis pin size that comes on the Harken unit. A third hole accepts lashing to adjust jib luff tension.

Turnbuckle eye on stationary bracket

attaches to an underdeck chainplate.

Fairlead feeds line onto the spool.

UNDERDECK FURLERS

Components (if ordering separately)

Upper	Hoistable				Weight				
swivel	swivel	Drum	Upper	swivel	Hoistabl	e swivel	Dr	um	Fits
Part No.	Part No.	Part No.	0Z	g	0Z	g	0Z	g	furler
164	464	477L	2.6	74	2.9	82	24	680	477
207	465	493L	9.2	261	8.9	252	42.6	1201	493
478U	482	478L	15	431	16.8	477	81	2296	478

Furlers

Part		Pin-to lenç		Dri	ım)	М	Lir in	ie Ø M	ax	Ja wi		Max wir		Clevi	s pin	We	ight	Maxi workin	
No.	Description	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	0Z	g	lb	kg
477	Underdeck furler/small*	6 1/8	156	3 1/8	79	1/8	3	5/32	4	5/16	8	1/8	3	1/4	6.4	23.3	661	950	431
493	Underdeck furler/medium*	7 3/8	188	4	102	5/32	4	3/16	5	3/8	10	3/16	5	5/16	7.9	50.5	1433	2000	907
478	Underdeck furler/large*	10 7/32	260	5	127	3/16	5	1/4	6	1/2	12	1/4	6	7/16	11.1	96	2721	3000	1361

^{*}Includes drum and upper swivel. Does not include hoistable swivel.

Tack Adapter Tangs

Part		Tang-hole to leng	•	Uppe	r pin J	Lowe	r pin Ø	Max wir	luff e Ø	Clevi	s pin Ø	We	ight		mum ig load	
No.	Description	in	mm	in	mm	in	mm	in	mm	in	mm	0Z	g	lb	kg	Fits furler
479	4 mm tack adapter tang	1 1/2	38	5/16	8	7/16	11	5/32	4	5/16	7.9	5.2	147	3000	1361	478
480	5 mm tack adapter tang	1 1/2	38	3/8	10	7/16	11	3/16	5	3/8	9.5	5.2	147	3000	1361	478
481	6 mm tack adapter tang	1 1/2	38	7/16	11	7/16	11	1/4	6	7/16	11.1	5.2	147	3000	1361	478
489	8 mm tack adapter tang	1 3/8	35	5/16	8	5/16	8	5/32	4	5/16	7.9	3.2	91	2000	907	493

Small Boat Furling Components: Halyard Swivels

All Harken Small Boat furling components can be purchased individually to mix and match. Systems require a drum and upper swivel. Some are also available as a complete kit. See page 159 for details.

Small Boat units are for furling only, not reefing.

Upper Halyard Swivels

Harken's high-performance 207HP swivel has needle roller thrust bearings that function smoothly under very high loads required at the top end of sportboat fleets, while matching the dimensions of our other 207 units—making an upgrade easy.

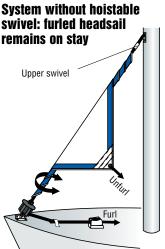
Standard upper halyard swivels feature multiple stacked races of ball bearings for low friction rotation under load. Delrin® ball bearings are used for low-load swivels. Torlon® bearings are used in standard and high-load swivels. Shackle or forked tang attachment options are available.

Hoistable Halvard Swivels

An optional hoistable ball bearing halyard swivel can be installed on the headstay so the sail can be raised or lowered without removing the headstay. Swivels are independent of the headstay, which allows the luff to be tensioned separately from the mast rake. Hoistable swivels work along with any standard Harken Small Boat furler.

Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates. Torlon is a registered trademark of Solvay Advanced Polymers L.L.C.

UPPER HALYARD SWIVELS


HOISTABLE SWIVELS

Multiple stacked races of Delrin or Torlon ball bearings roll easily under load.

System with hoistable swivel: furled headsail can be raised/ lowered

Part		Pin-to	•	Max	luff e Ø		is pin Ø	We	ight		imum ng load	
No.	Description	in	mm	in	mm	in	mm	OZ	g	lb	kg	Use with drum
Upper	Halyard Swivels											
162	Low-load upper swivel	2 1/2	64	1/8	3	1/4	6.4	2.6	74	500	227	163
164	Standard upper swivel	2 1/2	64	1/8	3	1/4	6.4	2.6	74	950	431	165, 477L, 1134
207	High-load upper swivel	3 27/32	97.4	3/16	5	5/16	8	9.2	261	2000	907	208, 493L
207HP	High-performance upper swivel	3 27/32	97.4	3/16	5	5/16	8	6.8	193	2000	907	208, 493L
1878	Standard upper swivel/shackle	2 1/2	64	1/8	3	1/4	6.4	2.7	77	950	431	165, 477L, 1134
1880	High-load upper swivel/shackle	4	102	3/16	5	5/16	8	9.3	264	2000	907	208, 493L
Hoista	ble Halyard Swivels											
464	Halyard swivel/hole for 4 mm wire	4 3/16*	124*	5/32	4	5/32	4	2.9	82	810	367	435, 477L
465	Halyard swivel/hole for 5 mm wire	5 11/16*	144*	3/16	5	3/16	5	8.9	252	1190	540	208, 493L, 1134
482	Halyard swivel/hole for 6 mm wire	7 19/32*	193*	1/4	6	1/4	6.4	16.8	477	3000	1361	478L

^{*}Shackle-to-shackle.

Small Boat Furling Components: Drums

All Harken Small Boat furling components can be purchased individually to mix and match. Systems require a drum and upper swivel. See page 160 for swivels. Some systems also available as a complete kit (see below).

Conventional Furling Drums

Harken Small Boat furling systems allow the trailerable cruising or dinghy sailor to set and furl the jib from the cockpit. Drums feature multiple stacked races of Delrin® or Torlon® bearings for smooth rotation under load. Small Boat units are for furling only, not reefing.

Continuous Line-Drive Furling Drum

The continuous line-drive furler is the perfect solution for high-performance skiffs and dinghies that use oversized jibs/gennakers and for staysails on larger boats. Unlike conventional furling drums, the low-profile line-driver never runs out of line, and can completely furl any sized sail. Offset holes in the drive sheave grip line securely, with the stripper arm and feeder working together to prevent line from jamming. The line guard adjusts in 90-degree increments to accommodate attachments to the boat.

Continuous line-drive furler features offset holes in the drive sheave to grip line securely.

Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates. Torlon is a registered trademark of Solvay Advanced Polymers L.L.C.

Part		Pin-to leng		Dru Ø		Li (ne J	Ja wi		Ma wir	c luff re Ø	Clevi	s pin	Wei	ight	Maxi workin		 Upper
No.	Description	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	0Z	g	lb	kg	swivel
163	Low-load furler	2 1/2	64	2 7/8	73	5/32	4	5/16	8	1/8	3	1/4	6.4	5	142	500	227	162
165	Standard furler	2 1/2	64	2 7/8	73	5/32	4	5/16	8	1/8	3	1/4	6.4	5	142	950	431	164
208	High-load furler	4	102	4 3/16	106	1/4	6	3/8	10	3/16	5	5/16	7.9	13.6	386	2000	907	207
1134	Continuous line-drive furler	2 11/16	68	2 7/8	73	3/16	5	5/16	8	1/8	3	1/4	6.4	5.4	154	950	431	164

Small Boat Furling Kits

Harken Small Boat furling systems allow the trailerable cruising or dinghy sailor to set and furl the jib from the cockpit. Small Boat units are for furling only, not reefing.

All kits include the drum and upper swivel. The 483 kit also includes a hoistable halyard swivel. To order components separately, see swivels page 160, drums above.

			Fits boats				Includes				Maxi	imum
Part		Mon	ohull	Catar	maran	Upper	Hoistable		We	ight	workin	ng load
No.	Description	ft	m	ft	m	swivel	swivel	Drum	0Z	g	lb	kg
434	Low-load kit	Under 16	Under 4.9			162		163	7.6	215	500	227
435	Standard kit	16 - 20	4.9 - 6.1	hasta 18	hasta 5.5	164		165	7.6	215	950	431
436	High-load kit	20 - 25	6.1 - 7.6	18 - 23	5.5 - 7	207		208	22.8	646	2000	907
483	Standard kit/hoistable halyard	16 - 20	4.9 - 6.1	hasta 18	hasta 5.5	164	464	165	11.2	318	950	431

REFLEX FURLING

In a quickly-evolving environment, the Harken Reflex furling system is pushing free-flying sail furling forward. The patented Reflex system provides sailors confidence that their free-flying asymmetrical spinnakers, gennakers, and code sails will furl completely with speed and control. Pull the furling line and the compact drive unit reacts reflexively to rotate the torsion cable, immediately transferring torque to the head. The head swivel reacts instantly, spinning from top to bottom where perfect furls must start. Reflex furling requires much less luff tension to transfer torque than earlier technology, making it the perfect solution for today's budding cable-less code sail technology which requires about half the luff loads previously required. And whether the Reflex torsion cable is specified, or in applications where the head swivel and a tack plate are sewn directly to the sail, Reflex furling's quick release geometry allows crews to use multiple sails with the same bottom unit.

Three sizes:

Unit 1 is rated at 1.5T MWL for boats to 11 m (36'). Unit 2 is rated at 2.5T MWL for boats up to 14 m (45'). Unit 3 is rated at 4.5T MWL for boats up to 17.4 m (58').

Complete even roll-up, tight wrap

 Low-friction ball bearing tack swivel allows the upper part of the sail to furl first.

Strong, lightweight

- Large diameter hardcoat-anodized 6061-T6 aluminum drive sheave.
- Torlon® ball bearings reduce friction, simplify maintenance.

Holds line securely

- Flexible polycarbonate alloy cowling allows rope to be easily fed into drive sheave without tools; keeps rope captive.
- Offset holes in drive sheave grip rope securely when furling.
- Stripper and feeder work together to prevent furling line from jamming.

162

Code Zero sails

- The quick-release T-fitting allows the bottom unit to handle both code zero and asymmetric sails.
- The fixed tack terminal option is used when the torsion cable is inside the luff. A 2:1 soft attach is recommended for increased purchase and luff tension.

Immediate, smooth, controlled furling

- Reflex cable is more torsionally resistant to corkscrewing than the current breed of textile cable.
- All Reflex furlers use braided stainless steel wire filaments over braided textile core to transmit torque to the head swivel for faster furling. Unit 3 furlers use a Dyneema® core, which twists less and handles increased halyard loads without stretching, making them well suited for code zero applications by eliminating need for additional luff cable.
- Smooth polymer cable jacket protects sails against abrasion.

Easily change furled spinnakers

- Quick-release modular T-fitting allows single drive unit to handle multiple sails.
- Each sail has its own torsion cable. Head and tack swivels are permanently fitted to each sail.
- Rolled sail easily disconnects with the pull of one spring-loaded pin; new furled sail slides and locks into T-slot.

Lightweight, low-profile head swivel

- Integral thimble/terminal for torsion cable saves weight; no fork, eye, or pin connections.
- Compact design reduces weight aloft, maximizes luff length.
- Padded cover prevents damage to spars.

Reflex for retrofit

 Both head and tack swivels are available with fork and pin interfaces to allow sails with existing torsion cables finished with eyes to be easily adapted to Reflex furling. Contact Harken for details.

Reflex for cable-less Code sails

 Reflex head swivels and tack plates with integral T-fittings can be sewn directly to today's cable-less sails.
 The compact solution allows for longer luff lengths. Plus the same drive unit can service the whole inventory. Contact Harken for details.

Ordering Asymmetric Reflex Furling

Use for asymmetric free-flying spinnakers, cruising spinnakers, and gennakers that have a loose positive luff that is longer than the leech.

Boat Requirements

- 1. Spinnaker halyard
- Attachment bail or adjustable tack fitting on a bowsprit or bow extension that allows the furler to clear the forestay and bow pulpit.

1. Determine System Size

Refer to "Typical Boat Length" and "Maximum Sail Area" on unit pages to select the correct size. Note: if you plan to use the system for code zero sails, the loads will be higher so the maximum boat length and sail area are smaller.

2. System Components

The Reflex furling system for asymmetric spinnakers includes all components necessary for one asymmetric spinnaker: one drive unit with snap shackle attachment, tack swivel, head swivel, torsion cable, set of cable clamps.

For each additional sail, order these components separately so you can easily switch furled sails using the quick-release T-slot: one tack swivel, head swivel, Reflex torsion cable, and set of cable clamps.

3. Determine Reflex Torsion Cable Length

Each system includes a length of torsion cable. To purchase the correct system including the right length of cable, determine your Full Hoist Dimension (FH). To do so, measure the distance between the sail attachment points at the top of the rig and the bow fitting or fully-extended bowsprit. Make sure the kit you select includes more cable than your FH measurement.

4. Attachment to Boat

The standard Reflex furling system for asymmetric spinnakers includes a threaded snap shackle adapter. To change to D shackle or soft-attach 2:1 adjuster see chart at right.

5. Ordering Furling Line

The Reflex furling system requires continuous furling line. Talk to your rigger about furling line construction using a structural cover over a nonstructural core. Note: have the rigger capture the aft block in the loop before splicing. The furling line loop can load into stanchion leads and drive unit after it is spliced.

Refer to chart below for line size and length. Double the loop length and add enough length for the overlap in the end-for-end splice.

Standard kit includes Head swivel with protective cover Cable clamps (2) Torsion cable Tack swivel terminal Drive unit Snap shackle

Alternative Attachments to Boat

Unit	High-resistance D shackle	Soft-attach 2:1 adapter
1	7351.21	7351.22
2	7352.21	7352.22
3	7353.21	7353.55

Furling Line

	Lin	e Ø	Length of loop	Length of loop
Unit	in	mm	(cruisers)	(racers)
1	1/4	6		
2	5/16	8	Measure from furler to aft lead block in cockpit	Use J dimension plus length of bowsprit minus 60 cm (2')
3	3/8	10	ait ioud blook ill cookpit	or bowspire militis oo om (2)

Reflex Furling System Unit 1 For Asymmetric Spinnakers

Tynical Roat Length 7 5 - 11 m (25' - 36')

iypicai buat LGII	yui 7.5 - 11 iii (25 - 30)
Maximum Sail Area	112 m² (1200 ft²)
Part No.	Description
7351.10.16M	Furling system with 16.15 m (53') cable*
7351.10.18M	Furling system with 18.29 m (60') cable*
7351.10.20M	Furling system with 20.12 m (66') cable*
Optional Parts	
7351.21	D-shackle threaded adapter
7351.22	2:1/soft attachment threaded adapter
7351.26	Reflex tack swivel terminal for extra sails
7351.28	Head swivel for extra sails
7351.37	Forked head swivel for retrofit torsion cable
7351.39	Reflex forked tack swivel terminal for retrofit torsion cable
7371.SP00L	Reflex torsion cable (spool) 8 mm x 305 m (5/16" x 1000')
7371	Reflex torsion cable (ordered by the foot) for extra sails
7357	Cable clamp (set of 2) for extra sails
7356	Lead block kit**
7355	Outboard fairlead

^{*}Includes: drive unit, head swivel, Reflex tack swivel terminal, snap shackle threaded adapter, Reflex torsion cable, **Fairlead kit includes 2 fairleads, fairlead with cleat, and aft block.

Reflex Furling System Unit 2

For Asymmetric Spinnakers

Typical Boat Length 10 - 14 m (34' - 45')

Maximum Sail Area	168 m² (1800 ft²)
Part No.	Description
7352.10.20M	Furling system with 20.12 m (66') cable*
7352.10.23M	Furling system with 22.87 m (75') cable*
7352.10.25M	Furling system with 25 m (82') cable*
Optional Parts	
7352.21	D-shackle threaded adapter
7352.22	2:1/soft attachment threaded adapter
7352.26	Reflex tack swivel terminal for extra sails
7352.28	Head swivel for extra sails
7352.37	Forked head swivel for retrofit torsion cable
7352.39	Reflex forked tack swivel terminal for retrofit torsion cable
7372.SP00L	Reflex torsion cable (spool) 10 mm x 305 m (3/8" x 1000')
7372	Reflex torsion cable (ordered by the foot) for extra sails
7358	Cable clamp (set of 2) for extra sails
7356	Lead block kit**
7355	Outboard fairlead

^{*}Includes: drive unit, head swivel, Reflex tack swivel terminal, snap shackle threaded adapter, Reflex torsion cable, and clamps. **Fairlead kit includes 2 fairleads, fairlead with cleat, and aft block.

Optional Parts

7351.28 7352.28

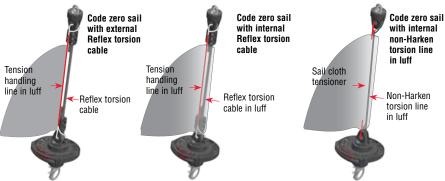
7352.37

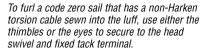
7351.39 7352.39

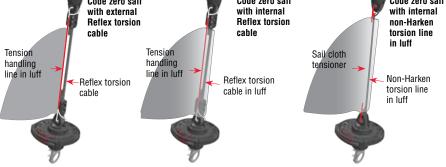
7351.21 7352.21

7351.22 7352.22

7357 7358






165

Ordering Code Zero Reflex Furling

The Reflex torsion cable is not designed to accept luff loads associated with earlier code sail technology. It does, however, transfer the necessary torque to the head swivel for complete furling twice as effectively as any system we have tested—at far lower loads. If high luff loads will be encountered, combine a tension handling line with the Reflex torsion cable.

Reflex Furling System Unit 1

Tynical Boat Length 6.7 - 10 m (22' - 32')

Maximum Sail Area	60 m² (650 ft²)
Part No.	Description
7361.10	Code zero furling system*
Optional Parts	
7351.20	Snap shackle threaded adapter
7351.21	D-shackle threaded adapter
7351.27	Reflex fixed tack terminal for extra sails
7351.28	Head swivel for extra sails
7351.37	Forked head swivel for retrofit torsion cable
7351.38	Reflex forked tack terminal for retrofit torsion cable
7371.SP00L**	Reflex torsion cable (spool) 8 mm x 305 m (5/16" x 1000')
7371**	Reflex torsion cable (ordered by the foot) for extra sails
7357**	Cable clamp (set of 2) for extra sails

^{*}Includes: drive unit, head swivel, Reflex fixed tack terminal, 2:1 threaded adapter.

Reflex Furling System Unit 2

Tynical Roat Length Q - 12 m (30' - 40')

Typical Dout Lon	yui 9 - 12 iii (30 - 40)
Maximum Sail Area	84 m² (900 ft²)
Part No.	Description
7362.10	Code zero furling system*
Optional Parts	
7352.20	Snap shackle threaded adapter
7352.21	D-shackle threaded adapter
7352.27	Reflex fixed tack terminal for extra sails
7352.28	Head swivel for extra sails
7352.37	Forked head swivel for retrofit torsion cable
7352.38	Reflex forked tack terminal for retrofit torsion cable
7372.SP00L**	Reflex torsion cable (spool) 10 mm x 305 m (3/8" x 1000')
7372**	Reflex torsion cable (ordered by the foot) for extra sails
7358**	Cable clamp (set of 2) for extra sails

^{*}Includes: drive unit, head swivel, Reflex fixed tack terminal, 2:1 threaded adapter.

Optional Parts

7351.37 7352.37

7351.27 7352.27

7351.38 7352.38

7358 7352.21

^{**}Order Reflex torsion cable and clamp set for 7361.10 to improve furling.

^{166 **}Order Reflex torsion cable and clamp set for 7362.10 to improve furling.

Reflex Furling System Unit 3 For Asymmetric Spinnakers

Typical Monohull Length 13 - 17.7 m (44' - 58') Typical Multihull Length 12 - 16.7 m (39' - 55')

iypicai mulliluli Leli	yui 12 - 10.7 iii (39 - 33)
Maximum Sail Area	223 m² (2400 ft²)
Part No.	Description
7353.10.22M	Furling system with 21.95 m (72') cable*
7353.10.26M	Furling system with 25.91 m (85') cable*
Optional Parts	
7353.21	D-shackle threaded adapter
7353.22	3:1/soft attachment threaded adapter
7353.26	Reflex tack swivel terminal for extra sails
7353.28	Head swivel for extra sails
7353.37	Forked head swivel for retrofit torsion cable
7353.39	Reflex forked tack swivel terminal for retrofit torsion cable
7373.SP00L	Reflex torsion cable (spool) 13 mm x 305 m (33/64" x 1000')
7373	Reflex torsion cable (ordered by the foot) for extra sails
7367	Cable clamp (set of 2) for extra sails

^{*}Includes: drive unit, head swivel, Reflex tack swivel terminal, snap shackle threaded adapter, Reflex torsion cable,

Reflex Furling System Unit 3

Typical Monohull Length 12 - 16.5 m (39' - 54')

Typical Multihull Length 11 - 15 m (36' - 50')

-Jpiour martinari zo	g 10 (00 00)			
Maximum Sail Area: Monohull 158 m² (1700 ft²); Multihull 139 m² (1500 ft²)				
Part No.	Description			
7363.10	Code zero furling system*			
Optional Parts				
7353.20	Snap shackle threaded adapter			
7353.21	D-shackle threaded adapter			
7353.27	Reflex fixed tack terminal for extra sails			
7353.28	Head swivel for extra sails			
7353.37	Forked head swivel for retrofit torsion cable			
7353.38	Reflex forked tack terminal for retrofit torsion cable			
7373.SP00L**	Reflex torsion cable (spool) 13 mm x 305 m (33/64" x 1000')			
7373**	Reflex torsion cable (ordered by the foot) for extra sails			
7367**	Cable clamp (set of 2) for extra sails			

^{*}Includes: drive unit, head swivel, Reflex fixed tack terminal, 3:1 threaded adapter.

^{**}Order Reflex torsion cable and clamp set for 7363.10 to improve furling.

Optional Parts

7353.28

7353.37

7353.26

7353.27

7353.39

7353.38

7353.20

7353.22

7367

Reflex Furling System Unit 1 For Cable-less Code Zero Sails

Typical Boat Length 6.7 - 10 m (22' - 32')

Maximum Sail Area	60 m² (650 ft²)
Part No.	Description
7351.10BASE	Drive unit
7351.22	2:1/soft attachment threaded adapter
7351.23	Reflex web-on tack terminal for cable-less code zero
7351.24	Web-on head swivel for cable-less code zero

Reflex Furling System Unit 2

For Cable-less Code Zero Sails

Typical Boat Length 9 - 12 m (30' - 40')

Maximum Sail Area	84 m² (900 ft²)
Part No.	Description
7352.10BASE	Drive unit
7352.22	2:1/soft attachment threaded adapter
7352.23	Reflex web-on tack terminal for cable-less code zero
7352.24	Web-on head swivel for cable-less code zero

Reflex Furling System Unit 3

For Cable-less Code Zero Sails

Typical Boat Length 12 - 16.5 m (39' - 54')

Typical Multihull Length 11 - 15 m (36' - 50')

Maximum Sail Area: Monohull 158 m² (1700 ft²); Multihull 139 m² (1500 ft²)		
Part No.	Description	
7353.10BASE	Drive unit	
7353.22	3:1/soft attachment threaded adapter	
7353.23	Reflex web-on tack terminal for cable-less code zero	
7353.24	Web-on head swivel for cable-less code zero	

7351.24 7352.24 7353.24

7351.23 7352.23 7353.23

7352.22 7353.22

7351.10BASE 7352.10BASE 7353.10BASE

POTIONS FOR THE PODIUM

SAILKOTE™

High Performance Dry Lubricant*

Use on hatches, drawers, sliding doors, sail tracks, mast tracks and slides, fishing reel components and fly line, sails, battens and telltales, slider cars and tracks

- Reduces drag in air and water
- Clean, dry, and easy to use
- Lasts up to 10 times longer than additives, oil, or wax-based lubricants

ANTIFOUL ALTERNATIVE

Environmentally Friendly Antifoul Polish

Use on hulls, outdrives, and propellers

- Helps prevent below-the-waterline
- Reduces drag and increases
- Biodegradable, non-metallic,

HULLKOTE™

High Performance Speed Polish

Use on fiberglass, metal, plexiglass, and painted surfaces

- Cleans, polishes, and protects
- Environmentally friendly citrus base
- Long-lasting, high-gloss finish
- Superior UV protection

ONEDROP™

Ball Bearing Conditioner

Use on ball bearing traveler cars and battcars

- · Repels salt, dirt, and other deposits
- · Protects, lubricates, and conditions
- Reduces friction so balls roll freely and evenly, greatly improving
- · Only one drop needed

FAST THAT LASTS

7881

7880

Ordering Jib Reefing & Furling

1. Choose Furler Type

The table below is based on sailing style and approximate boat size.

This table is only a guideline. Do not use it to determine unit size.

Size is based on the headstay and clevis pin diameters listed on unit pages.

Comparison Chart

	MKIV Racers/performance cruisers	MKIV Ocean Cruisers		
lote: Typical boat lengths are	e listed as a guideline but are not the determining factor. (Check with Harken if your length varies.		
Typical boat lengths	Unit 0: 6.5 – 9.1 m (22 – 30') Unit 1: 8.5 – 11 m (28 – 36') Unit 2: 10 – 14.2 m (35 – 46') Unit 3: 13.7 – 18.3 m (45 – 60') Unit 4: 19.8 – 24.4 m (65 – 80')	Unit 0: 6.5 – 9.1 m (22 – 30') Unit 1: 8.3 – 11 m (28 – 36') Unit 2: 10.6 – 14.2 m (35 – 46') Unit 3: 13.7 – 24.4 m (45 – 80')		
Foils	Double-groove Air foil Stainless steel feeder	Single-groove round foil Stainless steel feeder		
Halyard and tack swivel	Independent swivels for improved sail shape	Fixed		
Drum	Removable split drum for racing	Fixed		
Line	Included on Units 0, 1, 2	Included on Units 0, 1, 2		

Size is based on the headstay and clevis pin diameters listed on unit pages. Choose between unit sizes when diameters are shared by considering stay length and typical boat size recommendations. Contact Harken if you have any questions.

3. Determine if Additional Foils Needed

Use the I and J measurements to determine the length of the headstay. If the existing headstay is longer than the standard length listed under Headstay Length on unit pages, order additional foils and connectors. In some cases one or two extra foils and connectors may be necessary.

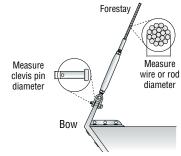
4. Determine Toggle and Link Plate

Use short toggle for maximum luff length.

5. Choose Lead Block Kit and Accessories

Harken recommends equipping every furling system with a ratchet lead block kit. Other parts on the **Furling Accessories** page (183,189) include equipment for halyard management and racing hardware for faster sail changes. Order line for MKIV Ocean furlers.

6. Prepare Sail and Headstay


Have a luff tape added to your genoa. Match the sail length to the stay length minus the height of the halvard swivel and lower unit. See sizing information on page 182.

MKIV and MKIV Ocean furlers install over the existing turnbuckle. The turnbuckle is accessible for adjustment by raising the drum. See the MKIV & MKVI Ocean Toggle & Rigging Options on page 171 to determine toggle and rigging requirements. Some headstays will require cutting and shortening to fit Harken toggle. Sometimes only the lower threaded turnbuckle fitting needs changing. Check with a professional rigger on stay condition before reusing stay.

For all units, rod rigging requires a Harken rod adapter stud. It must be cut and coldheaded by an authorized rod service center.

7. Contact

If you have questions, please contact your dealer or Harken Technical Service.

Headstay length = $\sqrt{I^2 + J^2}$

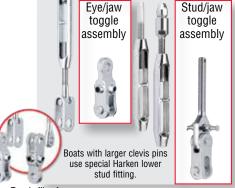
Toggle & Rigging Options

Use these rigger-supplied options to fit Harken toggles and leg kits shown below. Harken toggle and leg kit assemblies sold separately. See unit pages.

	Toggle		Clevis	Pin Ø	Fits	Furler
Model	Part No.	Description	in	mm	Unit	Part No.
-	7311.20 1/2	Jaw/jaw	1/2	12.7		7411.10
	7311.21 1/2	Long link plate w/toggle	1/2	12.7	1	
	7311.21 5/8	Long link plate w/toggle	5/8	15.9		
	7312.20 5/8	Jaw/jaw	5/8	15.9		
	7312.21 5/8	Long link plate w/toggle	5/8	15.9	2	7412.10
>	7312.21 3/4	Long link plate w/toggle	3/4	19.1		
MK	7413.20 3/4	Jaw/jaw w/short link plate	3/4	19.1		
_	7413.20 7/8	Jaw/jaw w/short link plate	7/8	22.2	3	7413.10
	7313.21 3/4	Long link plate w/toggle	3/4	19.1	J	
	7313.21 7/8	Long link plate w/toggle	7/8	22.2		
	7414.20 7/8	Jaw/jaw w/short link plate	7/8	22.2	4	7414.10
	7414.20 1	Jaw/jaw w/short link plate	1	25.4		
	7414.20 1 1/8	Jaw/jaw w/short link plate	1 1/8	28.6		
	7311.20 1/2	Jaw/jaw	1/2	12.7		
	7311.21 1/2	Long link plate w/toggle	1/2	12.7	1	7511.10
	7311.21 5/8	Long link plate w/toggle	5/8	15.9		
	7312.20 5/8	Jaw/jaw	5/8	15.9		
_	7312.21 5/8	Long link plate w/toggle	5/8	15.9	2	7512.10
MKIV Ocean	7312.21 3/4	Long link plate w/toggle	3/4	19.1		
ë	7413.20 3/4	Jaw/jaw w/short link plate	3/4	19.1		
≥	7413.20 7/8	Jaw/jaw w/short link plate	7/8	22.2		
Ž	7513.20 1	Jaw/jaw w/short link plate	1	25.4		
	7513.20 1 1/8	3 Jaw/jaw w/short link plate	1 1/8	28.6	3	7513.10
-	7313.21 3/4	Long link plate w/toggle	3/4	19.1	-	7513.10
	7313.21 7/8	Long link plate w/toggle	7/8	22.2		
	7513.21 1	Long link plate w/toggle	1	25.4		
	7513.21 1 1/8	Long link plate w/toggle	1 1/8	28.6		

	7410.20 5/16	Eye/jaw (reversible)	5/16	7.9		7410.10/	2
	7410.20 3/8	Eye/jaw (reversible)	3/8	9.5	0	7510.10	0
	7410.20 7/16	Eye/jaw (reversible)	7/16	11.1		7510.10	
ean	7411.20 1/2	Eye/jaw (reversible)	1/2	12.7	1	7411.10/ 7511.10	al
IKIV OC	7412.20 5/8	Eye/jaw (reversible)	5/8	15.9	2	7412.10/ 7512.10	
MKIV / MKIV Ocean							_
Σ	7311.20 5/8	Stud/jaw*	5/8	15.9	1	7411.10/ 7511.10	

3/4


19.1

2

7312.20 3/4

)II		
MK	YDRA	741X.25 X/X Hydraulic furling toggles	3/4 -2 7/16 19.1-61.9 3/4 -2 7/16 19.1-61.9 3H - 8H 741X.15
	Ξ	741X.26 X/X Furling toggles and cylinders	3/4 –2 7/16 19.1–61.9 3H - 8H /41X.15

Toggle flips for alternate chainplate position.

7412.10/

7512.10

MKIV & MKIV OCEAN JIB REEFING & FURLING

MKIV furlers are some of the most preferred products in the Harken product line due to their high performance, reliability and ability to be reconfigured for racing. Now, Harken introduces MKIV Ocean offering MKIV quality, specifically configured for the cruising sailor. It is engineered with strength, longevity, ease of use, at the right price without extra features cruisers might not need.

For occasional racers, the MKIV line is engineered with ease, durability, and winning in mind. The split drum can be removed easily for use with racing sails, providing the longest possible luff length. The independent swivel supports optimal sail shape.

Low-friction efficiency for easy furling and reefing

- Multiple rows of Torlon® ball bearings in high-load areas minimize friction.
- Stacked bearing races evenly distribute radial and thrust loads; drum and halyard swivel turn freely under load.
- Foils rotate around headstay so headstay load is isolated from the furling unit for easy furling.
- Large inner spool diameter increases mechanical advantage for powerful reefing and furling.

Stands up to sun, salt, and time

- Aluminum line guard, torque tube, and swivels deep-saturation hardcoat-anodized, UV-stabilized for durability.
- Line guard polyurethane-coated for wear protection.
- Specially formulated low-stretch black line is abrasion and UV-resistant; standard on units 0, 1, 2.
- Aerodynamic (MKIV) and round (MKIV Ocean), foils handle extreme reefing loads.
- Triple-interlock foil joints withstand years of torque loading: foil connectors geometric shape interlocks with foil; secures with syringe-injected adhesive; screws provide final lock.

	MKIV	MKIV Ocean
Typical boat size	6.5 - 24.4 m (22' - 80')	6.5 - 18.3 m (22' - 60')
Wire headstay diameter range	4 -16 mm (5/32" - 5/8")	4 - 12 mm (5/32" - ½")
Rod headstay diameter range	-4 to -48 (4.37 - 14.3 mm)	-4 to -30 (4.37 - 14.3 mm)
Sailor	Racer (split drum can be removed)	Non-Racer/Cruising
Shape	Aerodynamic Foil	Round Foil
Swivel	Double at head and tack	Single at head and tack
Sizes	Five models (0 - 4)	Four models (0 - 3)

Improved sail shape and boat control

- Independent halyard and tack swivels furl sail center before head and tack for improved sail shape when reefed (MKIV).
- Both MKIV and MKIV Ocean have a lightweight aluminum halyard swivel saving weight aloft to reduce pitching and heeling.

Split drum removes easily for racing (MKIV)

 Line guard and spool remove easily for use with full-hoist sails.


Double and single-groove foils offer smooth sail handling

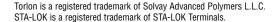
- Precision-extruded, double-groove (MKIV) and single-groove (MKIV Ocean) foils for smooth sail handling.
- Stainless steel feeder allows fast singlehanded hoist and sail changes (MKIV).
- Black-anodized foils (MKIV) and clear-anodized foils (MKIV Ocean).

Designed for easy installation

- Small outside drum dimension fits narrow bows or belowdeck.
- C-shaped open connectors with low-friction plastic isolators easily slip onto headstay wire and into foil.
- Drum assembly fits over existing turnbuckle allowing easy length adjustment. Harken toggle assembly accepts standard turnbuckle using swage, rod, Norseman, or STA-LOK® terminals.
- Eye-jaw toggle flips for fork or tang chainplate installation.

Accessories

- Lead block kit: Easy-to-mount ball bearing blocks lead line aft; fit 25 mm (1") stanchions.
- Halyard deflector: Install above the foil to prevent halyards from wrapping around the foil when furling.

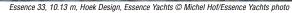


Easy to maintain

 Bearings require no lubrication or isolating seals.

 Stainless steel link plates raise the drum and fit over existing turnbuckle, resist scratches, and can be easily repolished.

MKIV Ocean Unit O Typical Boat Length 6.5 - 9.1 m (22' - 30')


typical dual length 0.5 - 9.1 m (22 - 30)					
Wire Ø ((1 x 19 SS)	Rod Ø	Clevis pin Ø		
4, 5, 6 mm (5/	32", 3/16", 7/32")	-4, -6 (4.37, 5.03 mm)	7.9, 9.5, 11.1 mm (5/16", 3/8", 7/16")		
Headstay Length	Standard 11.77 m (38	'7"); max 13.9 m (45'7")			
Part No.	Description				
7510.10	Furling system				
Toggle Assembly	Required - sold sep	arately			
7410.20 5/16	Eye/jaw reversible tog	gle assembly with 7.9 mm (5/16') clevis pin		
7410.20 3/8	Eye/jaw reversible tog	gle assembly with 9.5 mm (3/8")	clevis pin		
7410.20 7/16	Eye/jaw reversible tog	gle assembly with 11.1 mm (7/16	6") clevis pin		
Optional Parts					
7510.30	Extra 2.13 m (7') luff	foil extrusion			
7510.31	7510.31 Extra 153 mm (6") connector with bushings				
7420 -4 -4 rod adaptor stud (thread Ø		hread Ø UNF 7/16")*			
7421 -6	7421 -6 -6 rod adaptor stud (thread Ø UNF 7/16")*				

^{*}Use with conventional turnbuckle.

MKIV Ocean Unit 1 Typical Boat Length 8.3 - 11 m (28' - 36')

Wire Ø (1 x 19 SS)		Rod Ø	Clevis pin Ø
6, 7, 8 mm (1/4", 9/32", 5/16")		-8, -10, -12 (5.72, 6.35, 7.14 mm)	12.7, 15.9 mm (1/2", 5/8")
Headstay Length	Standard 13.99 n	n (45'11"); max 16.12 m (52'11")	
Part No.	Description		
7511.10	Furling system		
Toggle Assembly	Required - sold	separately	
7411.20 1/2	Eye/jaw reversible	e toggle assembly with 12.7 mm (1/2") cle	vis pin
7311.20 1/2	Jaw/jaw toggle as	sembly with 12.7 mm (1/2") clevis pin	
7311.20 5/8	Stud/jaw toggle a	ssembly with 15.9 mm (5/8") clevis pin (th	rread Ø UNF 5/8" LH)
7311.21 1/2	Long link plate w	th toggle assembly with 12.7 mm (1/2") c	levis pin
7311.21 5/8	Long link plate w	th toggle assembly with 15.9 mm (5/8") c	levis pin
Optional Parts			
7511.30	Extra 2.13 m (7')	luff foil extrusion	
7511.31	Extra 178 mm (7') connector with bushings	
7422 -8 -8 rod adaptor stud		ud (thread Ø UNF 1/2")*	
7423 -10	-10 rod adaptor s	tud (thread Ø UNF 1/2")*	
7424 -12	-12 rod adaptor s	tud (thread Ø UNF 5/8")*	·
		· · · · · · · · · · · · · · · · · · ·	·

7311.20 1/2

7311.20 5/8

7311.21 1/2 7311.21 5/8

7510.10 7511.10

MKIV Ocean Unit 2 Typical Boat Length 10.6 - 14.2 m (35' - 46')

Typiour bout congui rolo 1412 iii (00 40)					
Wire Ø	(1 x 19 SS)	Rod Ø		Clevis pin Ø	
8, 10, 11 mm (5/16", 3/8", 7/16")	-12, -17, -22 (7.14, 8.38, 9.	53 mm) 15.9	, 19.1 mm (5/8", 3/4")	
Headstay Length	Standard 18.38 m	(60'4"); max 20.51 m (67'4")			
Part No.	Description				
7512.10	Furling system				
Toggle Assembly	Required - sold	separately			
7412.20 5/8	Eye/jaw reversible	toggle assembly with 15.9 mm	(5/8") clevis pin		
7312.20 5/8 Jaw/jaw toggle assembly with 15.9 mm (5/8") clevis pin (thread Ø UNF 5/8" LH)			IF 5/8" LH)		
7312.20 3/4	312.20 3/4 Stud/jaw toggle assembly with 19.1 mm (3/4") clevis pin (thread Ø UNF 3/4" LH)			NF 3/4" LH)	
7312.21 5/8	Long link plate wi	th toggle with 15.9 mm (5/8") cl	evis pin		
7312.21 3/4	Long link plate wi	th toggle with 19.1 mm (3/4") cl	evis pin		
Optional Parts					
7512.30	Extra 2.13 m (7')	luff foil extrusion			
7512.31 Extra 216 mm (8 1/2") connector with bushings					
7424 -12	-12 rod adaptor stud (thread Ø UNF 5/8")*				
7425 -17	-17 rod adaptor stud (thread Ø UNF 5/8")*				
7426 -22	-22 rod adaptor s	tud (thread Ø UNF 3/4")*			

^{*}Use with conventional turnbuckle.

MKIV Ocean Unit 3 Typical Boat Length 13.7 - 24.4 m (45' - 80') Rod Ø

Wire Ø (1 x 19 SS)		Rod Ø	Clevis pin Ø
11, 12,	14, 16 mm	-22, -30, -40, -48	19.1, 22.2, 25.4, 28.6 mm
(7/16", 1/2	", 9/16", 5/8")	(9.53, 11.1, 12.7, 14.3 mm)	(3/4", 7/8", 1", 1 1/8")
leadstay Length	Standard 22.76 m	(74'8"); max 27.03 m (88'8")	
Part No.	Description		
7513.10	Furling system*		
oggle Assembly	Required - sold	separately	
7413.20 3/4	Jaw/jaw with shor	t link plate with 19.1 mm (3/4") clevis pin	
7413.20 7/8	Jaw/jaw with shor	t link plate with 22.2 mm (7/8") clevis pin	
7513.20 1	Jaw/Jaw with sho	rt link plate with 25.4 mm (1") clevis pin	
7513.20 1 1/8	Jaw/Jaw with sho	rt link plate with 28.6 mm (1 1/8") clevis p	oin
7313.21 3/4	Long link plate wit	h toggle with 19.1 mm (3/4") clevis pin	
7313.21 7/8	Long link plate wit	h toggle with 22.2 mm (7/8") clevis pin	
7513.21 1	Long link plate wit	h toggle assembly with 25.4 mm (1") clev	vis pin
7513.21 1 1/8	Long link plate wit	h toggle assembly with 28.6 mm (1 1/8")	clevis pin
Optional Parts			
7513.30	Extra 2.13 m (7') I	uff foil extrusion	
7513.31	Extra 254 mm (10	") connector with bushings	
7426 -22	-22 rod adaptor st	ud (thread Ø UNF 3/4")**	
7427 -30	-30 rod adaptor st	ud (thread Ø UNF 7/8")**	
7428 -40	-40 rod adaptor st	ud (thread Ø UNF 1")**	
7429 -48	-48 rod adaptor st	ud (thread Ø UNF 1 1/8")**	
*Line not included.	**Use with conve	entional turnbuckle.	

7412.20 5/8 7312.20 5/8

7413.20 7/8 7513.20 1

7513.21 1

7510.10 7511.10

7312.21 5/8 7312.21 3/4 7313.21 3/4 7313.21 7/8

© Mike Kern

MKIV Unit O

iypicai bual Leiiylii 0.3 - 9.1 iii (22 - 30)					
Wire Ø (1 x 19 SS)		Rod Ø	Clevis pin Ø		
4, 5, 6 mm (5,	4, 5, 6 mm (5/32", 3/16", 7/32")		7.9, 9.5, 11.1 mm (5/16", 3/8", 7/16")		
Headstay Length	Standard 11.77 m (38	3'7"); max 13.9 m (45'7")			
Part No.	Description				
7410.10	Furling system				
Toggle Assembly	Required - sold se	parately			
7410.20 5/16	Eye/jaw reversible to	oggle assembly with 7.9 mm (5/	16") clevis pin		
7410.20 3/8	Eye/jaw reversible to	oggle assembly with 9.5 mm (3/8	3") clevis pin		
7410.20 7/16	Eye/jaw reversible to	oggle assembly with 11.1 mm (7	/16") clevis pin		
Optional Parts					
7410.30	Extra 2.13 m (7') lut	ff foil extrusion			
7410.31	7410.31 Extra 165 mm (6 1/2") connector with bushings				
7420 -4	7420 -4 -4 rod adaptor stud (thread Ø UNF 7/16")*				
7421 -6	-6 rod adaptor stud	(thread Ø UNF 7/16")*			

^{*}Use with conventional turnbuckle.

MKIV Unit 1 Typical Boat Length 8.3 - 11 m (28' - 36')

Ø Cable (1 x 19 SS)		Ø Varilla	Ø Pasador
6, 7, 8 mm (1/4	1", 9/32", 5/16")	-8, -10, -12 (5.72, 6.35, 7.14 mm)	12.7, 15.9 mm (1/2", 5/8")
Headstay Lengthy	Standard 13.99 m	n (45'11"); max 16.12 m (52'11")	
Part No.	Description		
7411.10	Furling system		
Toggle Assembly I	Required - sold	separately	
7411.20 1/2	Eye/jaw reversibl	e toggle assembly with 12.7 mm (1/2") clev	ris pin
7311.20 1/2	Jaw/jaw toggle a	ssembly with 12.7 mm (1/2") clevis pin	
7311.20 5/8	Stud/jaw toggle a	assembly with 15.9 mm (5/8") clevis pin (th	read Ø UNF 5/8" LH)
7311.21 1/2	Long link plate w	rith toggle assembly with 12.7 mm (1/2") cl	evis pin
7311.21 5/8	Long link plate w	rith toggle assembly with 15.9 mm (5/8") cl	evis pin
Optional Parts			
7411.30	Extra 2.13 m (7')	luff foil extrusion	
7411.31	Extra 178 mm (7	") connector with bushings	
7422 -8	-8 rod adaptor st	ud (thread Ø UNF 1/2")*	
7423 -10	-10 rod adaptor s	stud (thread Ø UNF 1/2")*	
7424 -12	-12 rod adaptor s	stud (thread Ø UNF 5/8")*	

^{*}Use with conventional turnbuckle.

7311.20 1/2

7311.20 5/8

MKIV Unit 2

IYPICAI BOAT LENGTN 10.6 - 14.2 M (35° - 46°)					
Wire Ø (1 x 19 SS)	Rod Ø	Clevis pin Ø		
8, 10 mm	(5/16", 3/8")	-12, -17, -22 (7.14, 8.38, 9.53 mm)	15.9, 19.1 mm (5/8", 3/4")		
Headstay Length	Standard 18.38	m (60'4"); max 20.51 m (67'4")			
Part No.	Description				
7412.10	Furling system				
Toggle Assembly	Required - so	ld separately			
7412.20 5/8	Eye/jaw reversib	le toggle assembly with 15.9 mm (5/8") cl	evis pin		
7312.20 5/8	Jaw/jaw toggle a	ssembly with 15.9 mm (5/8") clevis pin (t	hread Ø UNF 5/8" LH)		
7312.20 3/4	Stud/jaw toggle	Stud/jaw toggle assembly with 19.1 mm (3/4") clevis pin (thread Ø UNF 3/4" LH)			
7312.21 5/8	Long link plate v	vith toggle with 15.9 mm (5/8") clevis pin			
7312.21 3/4	Long link plate v	vith toggle with 19.1 mm (3/4") clevis pin			
Optional Parts					
7412.30	Extra 2.13 m (7') luff foil extrusion			
7412.31	Extra 229 mm (9") connector with bushings				
7424 -12	-12 rod adaptor stud (thread Ø UNF 5/8")*				
7425 -17	-17 rod adaptor stud (thread Ø UNF 5/8")*				
7426 -22	-22 rod adaptor	stud (thread Ø UNF 3/4")*			

^{*}Use with conventional turnbuckle.

MKIV Unit 3 Typical Boat Length 13.7 - 18.3 m (45' - 60')

Wire Ø (1	l x 19 SS)	Rod Ø	Clevis pin Ø
11, 12 mm	(7/16", 1/2")	-22, -30 (9.53, 11.1 mm)	19.1, 22.2 mm (3/4", 7/8")
Headstay Length	Standard 22.76 m	(74'8"); max 24.89 m (81'8")	
Part No.	Description		
7413.10	Furling system*		
Toggle Assembly	Required - sold	separately	
7413.20 3/4	Jaw/jaw with sho	rt link plate with 19.1 mm (3/4") clevis pin	
7413.20 7/8	Jaw/jaw with sho	rt link plate with 22.2 mm (7/8") clevis pin	
7313.21 3/4	Long link plate w	th toggle with 19.1 mm (3/4") clevis pin	
7313.21 7/8	Long link plate w	th toggle with 22.2 mm (7/8") clevis pin	
Optional Parts			
7413.30	Extra 2.13 m (7')	luff foil extrusion	
7413.31	Extra 248 mm (9	3/4") connector with bushings	
7426 -22	-22 rod adaptor s	tud (thread Ø UNF 3/4")**	
7427 -30	-30 rod adaptor s	tud (thread Ø UNF 7/8")**	

MKIV Unit 4

Typical Boat Lo	lypical Boat Length 19.8 - 24.4 m (65' - 80')					
Wire Ø (1 x 19 SS)	Rod Ø	Clevis pin Ø			
12, 14, 16 mm	(1/2", 9/16", 5/8")	-30, -40, -48 (11.1, 12.7, 14.3 mm)	22.2, 25.4, 28.6 mm (7/8", 1", 1 1/8")			
Headstay Length	Standard 22.88 m	(75'1"); max 27.15 m (89'1")				
Part No.	Description					
7414.10	Furling system*					
Toggle Assembly	Required - sold	separately				
7414.20 7/8	Jaw/jaw with sho	rt link plate with 22.2 mm (7/8") clevis pi	n			
7414.20 1	Jaw/jaw with sho	rt link plate with 25.4 mm (1") clevis pin				
7414.20 1 1/8	Jaw/jaw with sho	rt link plate with 28.57 mm (1 1/8") clevis	s pin			
Optional Parts						
7414.30	Extra 2.13 m (7')	luff foil extrusion				
7414.31	Extra 270 mm (10	3/4") connector with bushings				
7427 -30	-30 rod adaptor s	tud (thread Ø UNF 7/8")**				
7428 -40	-40 rod adaptor s	tud (thread Ø UNF 1")**				
7429 -48	-48 rod adaptor s	tud (thread Ø UNF 1 1/8")**				

^{*}Line not included. **Use with conventional turnbuckle.

MKIV UNDERDECK JIB REEFING & FURLING

Harken's MKIV Underdeck Jib Reefing & Furling line is the Unit 1 Unit 2 Unit 3 Unit 0 Foil joints

perfect solution for sailors who want an aerodynamic system with a minimal amount of equipment above deck. The underdeck furler provides a low-friction, clean layout solution that minimizes windage, while uncluttering the bow for easy anchor access. Offered in four sizes for boats from 6.7 - 18.3 m (22' - 60').

Low-friction efficiency for easy furling and reefing

- Ball bearings between center hub and deck bearing, and main shaft reduce friction; drum and halyard swivel turn freely under load.
- Foils rotate around headstay so headstay load is isolated from the unit for easy furling.

Stand up to sun, salt, and time

- Units 1, 2, 3: Aluminum line guard, torque tube, and swivels hardcoat-anodized, UV-stabilized for durability. Line guard is polyurethane-coated for additional corrosion protection. Threaded height adjuster uses dissimilar metals (stainless steel and bronze) to prevent galling.
- Unit 0: One-piece integrated aluminum deck bearing and line guard hardcoat-anodized for durability and corrosion resistance.
- · Aerodynamic, clear-anodized aluminum Air foils handle extreme reefing loads.
- Triple-interlock foil joints withstand years of torque loading: foil connector's geometric shape interlocks with foil; secures with syringe-injected adhesive; screws provide final lock.

Improved sail shape and boat control

- Independent halyard and tack swivels furl sail center before head and tack for improved sail shape when reefed.
- Lightweight aluminum halyard swivel saves weight aloft to reduce pitching and heeling.
- Tack sits at deck level, lowering the tack height for maximized sail area.
- The torque tube houses a full-length turnbuckle for optimal mast rake and tension adjustment.
- Units 1, 2, 3: High-strength universal joints articulate, allowing ample headstay sag when sailing downwind.
- Unit 0: Articulating ball joint eliminates universal joint to reduce weight, simplify maintenance.

Fast hoists, douses, reefs, and sail changes

- Precision-extruded, double-groove Air foils for smooth sail handling and fast sail changes.
- Stainless steel feeder allows fast singlehanded hoist and sail changes.

Designed for easy installation

- Units 1, 2, 3: Self-locking threaded height adjuster for correct fit between chainplate and deck.
- Unit 0: Does not require height adjuster; furler and headstay independent of each other allowing flexible installation options.
- Torque tube fits over existing turnbuckle allowing easy length adjustment. Hub assembly toggle accepts standard turnbuckle using swage, rod, Norseman, or STA-LOK® terminals.

Belowdeck drum fits narrow bows

· Small outside drum diameter.

 C-shaped open connectors with low-friction plastic isolators easily slip onto headstay wire and into foil.

Easy to maintain

- Bearings require no lubrication or isolating seals.
- Through-deck bearing into underdeck compartment provides a low profile, nearly watertight system.

MKIV Underdeck Unit O Typical Boat Length 6.7 - 9.1 m (22' - 30')

ypical boat congul c.7 - 5.1 iii (22 - 50)				
Wire Ø ((1 x 19 SS)	Rod Ø	Clevis pin Ø	
5, 6 mm (3/16", 7/32")	-4, -6 (4.37, 5.03 mm)	_	
Headstay Length	Standard 11.7 m (38'4"); max 13.8 m (45'4")		
Part No.	Description			
7410.11	Furling system			
Optional Parts				
7410.30	Extra 2.13 m (7')	luff foil extrusion		
7410.31	Extra 165 mm (6	1/2") connector with bushings		

MKIV Underdeck Unit 1 Typical Boat Length 8.3 - 11 m (28' - 36')

Wire Ø	(1 x 19 SS)	Rod Ø	Clevis pin Ø
6, 7, 8 mm (1	/4", 9/32", 5/16")	-8, -10 (5.72, 6.35 mm)	12.7 mm (1/2")
Headstay Length	Standard 13.99 m (4	5'11"); max 16.12 m (52'11")	
Part No.	Description		
7411.11 1/2	Furling system with	12.7 mm (1/2") clevis pin	
Optional Parts			
7411.30	Extra 2.13 m (7') lu	ff foil extrusion	
7411.31	Extra 178 mm (7")	connector with bushings	

Dimensions

				A	C						
	Part	Mi	in	Ma	ax	E	3	M	in	M	ax
Unit	No.	in	mm	in	mm	in	mm	in	mm	in	mm
0	7410.11	6 7/8	175			5	30.4				
1	7411.11 1/2	10 5/8	270	15 5/8	397	5 1/2	140	4 5/8	117	9 5/8	244

All MKIV Underdeck furlers feature a ball bearing halyard swivel.

7410.31 7411.31

7410.30 7411.30

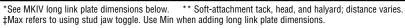
MKIV Underdeck Unit 2 Typical Boat Length 10.6 - 14.2 m (35' - 46')

ijpioui bout Eoligiii Tolo	1712 III (00 70)	
Wire Ø (1 x 19 SS)	Rod Ø	Clevis pin Ø
8, 10 mm (5/16", 3/8")	-12, -17 (7.14, 8.38 mm)	15.9 mm (5/8")
Headstay Length Standard 18.38	m (60'4"); max 20.51 m (67'4")	
Part No. Description		
7412.11 5/8 Furling system	with 15.9 mm (5/8") clevis pin	
Optional Parts		
7412.30 Extra 2.13 m (7	7') luff foil extrusion	
7412.31 Extra 229 mm	(9") connector with bushings	

MKIV Underdeck Unit 3 Typical Boat Length 13.7 - 18.3 m (45' - 60')

Ø Cable	(1 x 19 SS)	Ø Varilla	Ø Pasador
11, 12 mm	(7/16", 1/2")	-22, -30 (9.53, 11.1 mm)	19.1, 22.2 mm (3/4", 7/8")
Headstay Length	Standard 22.88 m (75	1"); max 25.02 m (82'1")	
Part No.	Description		
7413.11 3/4	Furling system with 1	9.1 mm (3/4") clevis pin	
7413.11 7/8	Furling system with 2	22.2 mm (7/8") clevis pin	
Optional Parts			
7413.30	Extra 2.13 m (7') luff	foil extrusion	
7413.31	Extra 248 mm (9 3/4) connector with bushings	
	-		

Dimensions


		C									
	Part	Mi	n	Ma	X	В	}	Mi	in	Ma	IX
Unit	No.	in	mm	in	mm	in	mm	in	mm	in	mm
2	7412.11 5/8	12 11/16	322	18 9/16	471	6 5/8	167	5 3/8	137	11 5/16	287
3	7413.11 3/4	16 1/8	410	23 5/8	600	8 3/16	208	6 7/8	175	14 3/8	365
3	7413.11 7/8	16 9/16	421	24 1/4	616	8 3/16	208	7 5/16	186	15	381

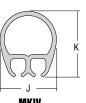
Jib Reefing and Furling Dimensions

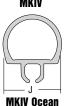
MKIV & MKIV Ocean Using Toggle*

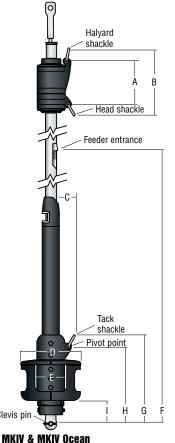
			Part		Α			В				C			D			Ē	
	System	Unit	No.	in		mm		in	mm		in	mm		in	n	ım	in		mm
-635		0	7410.10	3 3/4		96	5	7/8	150	1	7/8	47		5 1/2	1	40	2 5/8		66
68	>	1	7411.10	4 3/4		120		7	178		2	51		6 5/8	1	67	3 1/16		78
	MKIV	2	7412.10	5 5/8	3	143	9	1/8	231	2 9	9/16	66		8 3/16	2	08	3 13/16	i	97
-		3	7413.10	7 5/1	-	186	11	5/8	296	3	3/8	86		9 3/4		47	4 3/4		121
50		4	7414.10	8 15/1		227		**				**		11 1/16		80	5 1/8		130
		0	7510.10	3 3/4		96		7/8	150		7/8	47		5 1/2		40	2 5/8		66
6.0	MKIV Ocean	1	7511.10	4 3/4		120		7	178		2	51		6 5/8		67	3 1/16		78
	2 8	2	7512.10	5 5/8		143		1/8	231		9/16	66		8 3/16		08	3 13/16		97
1		3	7513.10	7 5/1		186	11	5/8	296		3/8	86		9 3/4	2	47	4 3/4		121
						F				G				Н					_
			David		v+	Mi	in	Ma	v+	Mi	n	Max	/ +	Mi	n	Ma	v+		in
			Part	Ma	-				-				-				•		
	System	Unit	No.	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
	System	Unit 0	No. 7410.10	in 41	mm 1041	in 39 1/4	mm 997	in 8 3/8	mm 213	in 8	mm 203	in 7 5/16	mm 186	in 7	mm 175	in 2 5/16	mm 59	in 2	mm 51
	,,,,,,	0	No. 7410.10 7411.10	41 46 1/4	mm 1041 1175	in 39 1/4 42 1/4	mm 997 1073	8 3/8 12	mm 213 305	8 9 3/4	mm 203 247	7 5/16 11	mm 186 280	7 8 3/4	mm 175 222	in 2 5/16 5	mm 59 129	in 2 2 7/8	mm 51 71
10	,,,,,,	0 1 2	No. 7410.10 7411.10 7412.10	41 46 1/4 51 3/4	mm 1041 1175 1314	in 39 1/4	mm 997	8 3/8 12 15 1/8	mm 213 305 384	in 8	mm 203	7 5/16 11 13 15/16	mm 186 280 348	in 7	mm 175	in 2 5/16 5 6 7/16	mm 59 129 164	in 2	mm 51
	System	0	No. 7410.10 7411.10 7412.10 7413.10	41 46 1/4 51 3/4 50 5/8	mm 1041 1175 1314 1286	in 39 1/4 42 1/4	mm 997 1073	8 3/8 12 15 1/8 18 7/16	mm 213 305 384 467	8 9 3/4 12 1/16	mm 203 247 306	7 5/16 11 13 15/16 16 5/8	mm 186 280 348 420	7 8 3/4	mm 175 222	in 2 5/16 5 6 7/16 7 3/8	mm 59 129 164 188	in 2 2 7/8	mm 51 71
	,,,,,,	0 1 2 3 4	No. 7410.10 7411.10 7412.10 7413.10 7414.10	in 41 46 1/4 51 3/4 50 5/8 55 5/16	mm 1041 1175 1314 1286 1405	39 1/4 42 1/4 46 3/4	997 1073 1187	in 8 3/8 12 15 1/8 18 7/16	mm 213 305 384 467	8 9 3/4 12 1/16	mm 203 247 306	in 7 5/16 11 13 15/16 16 5/8 20	mm 186 280 348 420 509	7 8 3/4 10 7/8	mm 175 222 276	in 2 5/16 5 6 7/16 7 3/8 8 5/8	mm 59 129 164 188 220	2 2 7/8 3 3/8	mm 51 71 85
	MKIV	0 1 2	No. 7410.10 7411.10 7412.10 7413.10 7414.10 7510.10	in 41 46 1/4 51 3/4 50 5/8 55 5/16 41	mm 1041 1175 1314 1286 1405 1041	in 39 1/4 42 1/4 46 3/4 39 1/4	997 1073 1187 997	in 8 3/8 12 15 1/8 18 7/16 ***	mm 213 305 384 467	8 9 3/4 12 1/16	mm 203 247 306	in 7 5/16 11 13 15/16 16 5/8 20 7 5/16	mm 186 280 348 420 509 186	7 8 3/4 10 7/8	mm 175 222 276	in 2 5/16 5 6 7/16 7 3/8 8 5/8 2 5/16	mm 59 129 164 188 220 59	in 2 2 7/8 3 3/8	mm 51 71 85 51
	MKIV	0 1 2 3 4	No. 7410.10 7411.10 7412.10 7413.10 7414.10 7510.10 7511.10	in 41 46 1/4 51 3/4 50 5/8 55 5/16 41 46 1/4	mm 1041 1175 1314 1286 1405 1041 1175	in 39 1/4 42 1/4 46 3/4 39 1/4 42 1/4	997 1073 1187 997 1073	8 3/8 12 15 1/8 18 7/16 *** 8 3/8 12	mm 213 305 384 467 213 305	8 9 3/4 12 1/16 *** 8 9 3/4	203 247 306 203 247	in 7 5/16 11 13 15/16 16 5/8 20 7 5/16 11	mm 186 280 348 420 509 186 280	7 8 3/4 10 7/8 7 8 3/4	mm 175 222 276 175 222	in 2 5/16 5 6 7/16 7 3/8 8 5/8 2 5/16 5	mm 59 129 164 188 220 59 129	2 2 7/8 3 3/8 2 2 7/8	mm 51 71 85 51 71
	,,,,,,	0 1 2 3 4	No. 7410.10 7411.10 7412.10 7413.10 7414.10 7510.10	in 41 46 1/4 51 3/4 50 5/8 55 5/16 41	mm 1041 1175 1314 1286 1405 1041	in 39 1/4 42 1/4 46 3/4 39 1/4	997 1073 1187 997	in 8 3/8 12 15 1/8 18 7/16 ***	mm 213 305 384 467	8 9 3/4 12 1/16	mm 203 247 306	in 7 5/16 11 13 15/16 16 5/8 20 7 5/16	mm 186 280 348 420 509 186	7 8 3/4 10 7/8	mm 175 222 276	in 2 5/16 5 6 7/16 7 3/8 8 5/8 2 5/16	mm 59 129 164 188 220 59	in 2 2 7/8 3 3/8	mm 51 71 85 51

MKIV Long Link Plate

ĺ	*Note: If a long link plate is used, add the following dimensions to F, G, H, and I (based on whether plate is used full-length or shortened to one of five hole positions).								
0.1	Unit 1	12.7 mm (1/2") clevis pin	Add 337–168 mm (13 1/4"–6 5/8")						
Bill	oiii i	15.9 mm (5/8") clevis pin	Add 286-111 mm (11 1/4"-4 3/8")						
18	Unit 2	15.9 mm (5/8") clevis pin	Add 410–210 mm (16 1/8"–8 1/4")						
	OIIII 2	19.1 mm (3/4") clevis pin	Add 344-144 mm (13 9/16"-5 11/16")						
100	Unit 3	19.1 mm (3/4") clevis pin	Add 497–271 mm (19 9/16"–10 11/16")						
65	UIIIL 3	22.2 mm (7/8") clevis pin	Add 505–279 mm (19 7/8"–11")						


Foil Dimensions


		Dout			K		Foil	length	Luff tap	10*
System	Unit	Part No.	in	mm	in	mm	ft/in	m	in	mm
	0	7410.30	7/8	23	1 1/32	26	7'	2.13	#6 (6/32)	5
>	1	7411.30	1	25	1 1/8	29	7'	2.13	#6 (6/32)	5
MKIV	2	7412.30	1 1/4	32	1 3/8	36	7'	2.13	#6 (6/32)	5
2	3	7413.30	1 1/2	38	1 11/16	43	7'	2.13	#6 (6/32)	5
	4	7414.30	1 3/4	44	1 27/32	47	7'	2.13	#6 (6/32)	5
	0	7510.30	1 1/8	28			7'	2.13	#6 (6/32)	5
<u>§</u> €	1	7511.30	1 3/8	35			7'	2.13	#6 (6/32)	5
MKIV	2	7512.30	1 3/4	44			7'	2.13	#6 (6/32)	5
	3	7513.30	2	50			7'	2.13	#6 (6/32)	5

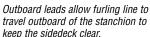

^{*}Nominal dimensions only, actual luff tape dimensions are larger.

Furling Lead Blocks

Harken recommends equipping jib reefing and asymmetric/code zero furling systems with lead blocks for safe furling from the cockpit. Lightweight, UV-stabilized Carbo blocks run exclusively on ball bearings for fast trimming under any load. Furling leads are offered separately or in complete kits.

MKIV and MKIV Ocean Jib Reefing and Furling Leads

A 57 mm Carbo ratchet maintains tension on the line so the unit furls smoothly and easily. The outboard assembly allows the line to travel outside of the stanchions, keeping the sidedecks clear. Inboard block assemblies are available for the bow pulpit, to handle two lines, for continuous line furlers, or for cutter-rigged boats with two furlers. Ball and socket bases align blocks for smooth leads aft.


Reflex Asymmetric and Code Zero Furling Leads

Two stanchion leads forward guide line outboard to keep sidedecks clear. A stanchion lead aft features a double Harken Cam-Matic for cleating continuous furling line. A Carbo T2 block with shockcord attaches aft of the double cam to keep line in place for easy access.

-

REFLEX ASYMMETRIC & CODE ZERO FURLING LEADS

Part		She: Ø		Wei	ight		line Ø		mum ng load	
No.	Description	in	mm	0Z	g	in	mm	lb	kg	Use with
MKIV	& MKIV Ocean									
7401	40 mm Carbo lead block assembly	1 9/16	40	3.7	106	3/8	10	485	220	25 mm (1") stanchions
7402	57 mm Carbo ratchet lead block assembly	2 1/4	57	5.4	152	3/8	10	500	227	25 mm (1") stanchions
7403	29 mm outboard lead block assembly	1 1/8	29	3	85	3/8	10			25 mm (1") stanchions
7404	Lead block kit*			19.2	544	3/8	10			25 mm (1") stanchions
7405	40 mm Carbo stanchion mount double lead	1 9/16	40	5.6	159	3/8	10	485	220	25 mm (1") stanchions
7407	57 mm Carbo lead block	2 1/4	57	5.2	149	3/8	10	500	227	25 mm (1") stanchions
Reflex										
7355	Outboard fairlead			4.35	123	3/8	10			25 mm (1") stanchions
7356	Lead block kit**			26.54	751	3/8	10			25 mm (1") stanchions
7359	Outboard fairlead/double cam cleat			9.79	276	3/8	10			25 mm (1") stanchions
7360	57 mm T2 lead block/bungee	2 1/4	57	3.7	106	3/8	10	500	227	

MKIV HYDRAULIC JIB REEFING & FURLING

Powerful performance packed into a compact, slim profile makes our hydraulic headsail furlers the ultimate in push-button sail control. Perfect for cruisers and performance cruisers, these free-rolling systems fit wire sizes from 11 - 25 mm (7/16" - 1"); rod from -22 to -115 or equivalent fiber stays. Parts and service are available around the world.

Low-friction efficiency for easy furling and reefing

- Multiple rows of Torlon® ball bearings in high-load areas minimize friction.
- Stacked bearing races evenly distribute radial and thrust loads; halyard swivel turns freely under load.

Standard transmission reduces mechanical friction and pressure loss

- Engages/disengages the motor's powered and manual gear drive for efficient operation.
- Worm gear drive prevents backwinding; unloads hydraulic motor when reefed.

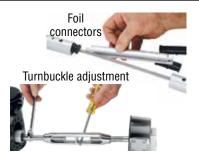
High-strength, lightweight

- Hardcoat-anodized, UV-stabilized aluminum torque tube, motor, and gear housing.
- Aerodynamic, clear-anodized aluminum Air foils handle extreme reefing loads; carbon fiber foils available on request.
- Triple-interlock foil joints withstand years of torque loading: foil connectors geometric shape interlocks with foil; secures with syringe-injected adhesive; screws provide final lock.

Improved sail shape and boat control

- Independent halyard and tack swivels furl sail center before head and tack for improved sail shape when reefed.
- Lightweight aluminum halyard swivel saves weight aloft to reduce pitching and heeling.
- Unit 3 uses a hard shackle. Units 4 through 6 lashed on with Spectra® line; patented system evenly distributes loads.
- Lower unit's compact size brings sail's tack close to deck.

Fast hoists, douses, reefs, and sail changes


- Precision-extruded, double-groove Air foils for smooth sail handling and fast sail changes.
- Stainless steel feeder allows fast singlehanded hoist and sail changes.

Emergency manual operation in case of power loss

 Use supplied crank handle or cordless drill adapter, or use standard winch handle.

Designed for easy installation

- C-shaped open connectors with low-friction plastic isolators easily slip onto headstay wire and into foil.
- Lower unit fits over existing turnbuckle allowing easy length adjustment. Harken toggle assembly accepts standard turnbuckle using swage, rod, Norseman, or STA-LOK® terminals.
- Lower toggle assembly fixes at 90-degree intervals, accepts any chainplate direction.
- Motor has no case drain line for easier installation; fewer hoses.

Easy to maintain

- Bearings require no lubrication or isolating seals.
- Hardened steel gears and bearings in lower unit permanently lubricated in oil bath.
- Fewer parts easier to assemble and service.

Options

 A hydraulic cylinder installed below unit adjusts headstay, keeps luff tension constant. This prevents halyard and tack attachments from overloading when the headstay is adjusted.

Torlon is a registered trademark of Solvay Advanced Polymers L.L.C. Spectra is a registered trademark of Honeywell International, Inc. STA-LOK is a registered trademark of STA-LOK Terminals.

MKIV Hydraulic **Jib Reefing & Furling**

Headstay Length Aluminum foil: standard 22.77 m (74'9"), max 24.91 m (81'9")

Furling system with aluminum foils

Toggle for 19 mm (3/4") clevis pin

Toggle for 22.2 mm (7/8") clevis pin

Extra 2.13 m (7') luff foil extrusion

Extra 248 mm (9 3/4") connector with bushings

-22 rod adaptor stud (thread Ø UNF 3/4")

-30 rod adaptor stud (thread Ø UNF 7/8")* Contact Harken to request quote and lead time. *Use with conventional turnbuckle.

7413.25 7/8 7414.25 7/8 7414.25 1 7414.25 1 1/8

Manual operation switch and gear socket

Unit 4

Unit 3

Unit 4

Unit 3

Part No.

7413.15

7413.25 3/4

7413.25 7/8

7413.31

7426 -22

7427 -30

Unit 4

7414.31L

7427 -30

7428 -40

7429 -48

Optional Parts 7413.30

Wire Ø (1 x 19 SS)

11, 12 mm (7/16", 1/2")

Description

Toggle Assembly Required - sold separately

Wire Ø	(1 x 19 SS)	Rod Ø	Clevis pin Ø
12, 14, 16 mm	(1/2", 9/16", 5/8")	-30, -40, -48 (11.1, 12.7, 14.3 mm)	22.2, 25.4, 28.6 mm (7/8", 1", 1 1/8")
Headstay Length	Aluminum foil: sta	andard 22.93 m (75'3"), max 29.33 m (96'3")	
Part No.	Description		
7414.158		with aluminum foils and small bushings; , 12 mm (1/2") wire	
7414.15L		with aluminum foils and large bushings; 16 mm (9/16", 5/8") wire	
Toggle Assembly	Required - sold	separately	
7414.25 7/8	Toggle for 22.2	mm (7/8") clevis pin	
7414.25 1	Toggle for 25.4	mm (1") clevis pin	
7414.25 1 1/8	Toggle for 28.6	mm (1 1/8") clevis pin	
Optional Parts			
7414.30	Extra 2.13 m (7) luff foil extrusion	
7414.31\$		10 3/4") connector with small bushings; d, 12 mm (1/2") wire	

7426 -22

7427 - 30

7428 -40

7429 -48

Rod Ø

-22, -30 (9.53, 11.1 mm)

-48 rod adaptor stud (thread Ø UNF 1 1/8")* Contact Harken to request quote and lead time. *Use with conventional turnbuckle.

fits -48 rod, 14, 16 mm (9/16", 5/8") wire

-30 rod adaptor stud (thread Ø UNF 7/8")

-40 rod adaptor stud (thread Ø UNF 1")

Extra 270 mm (10 3/4") connector with large bushings;

MKIV Hydraulic Jib Reefing & Furling

7415.31S 7415.31M 7415.31L 7416.31S 7416.31M 7416.31L

7415.25 1 1/8 7415.25 1 1/4 7415.25 X X/X 7416.25 1 1/4 7416.25 1 3/8 7416.25 X X/X

Wire Ø (1	v 10 CC)	Rod Ø	Clavie nin Ø				
•			Clevis pin Ø				
16, 19, 22 mm ((5/8", 3/4", 7/8")	-48, -60, -76‡ (14.3, 16.8, 17.9 mm)	28.6, 31.8 mm (1 1/8", 1 1/4")				
leadstay Length		m foil: standard 23.8 m (78'), max 34.7 m (114	**				
,	7415.15M and 741	5.15L aluminum foil: standard 26.5 m (87'), m	nax 34.7 m (114')				
Part No.	Description						
7415.158	Furling system with	h aluminum foils and small bushings; fits -48, -	-60 rod, 16 mm (5/8") wire				
7415.15M	Furling system with	h aluminum foils and medium bushings: fits -7	'6 rod				
7415.15L	Furling system with	ystem with aluminum foils and large bushings; fits 19, 22 mm (3/4", 7/8") wire					
oggle Assembly R	equired - sold s	parately					
7415.25 1 1/8	Toggle for 28.6 mm	n (1 1/8") clevis pin					
7415.25 1 1/4	Toggle for 31.8 mm	n (1 1/4") clevis pin					
7415.25 X X/X*	Toggle for all other	clevis pin sizes (customer supplied dimension	ns)				
Optional Parts							
7415.30	Extra 2.74 m (9') a	luminum foil extrusion					
7415.318	Extra 305 mm (12") connector with small bushings; fits -48, -60 r	rod, 16 mm (5/8") wire				
7415.31M	Extra 305 mm (12") connector with medium bushings; fits -76 roo	d				
7415.31L	Extra 305 mm (12") connector with large bushings; fits 19, 22 mm (3/4", 7/8") wire						
7429 -48		ud (thread Ø UNF 1 1/8") * *	, ,				

7429 -48

Contact Harken to request quote and lead time.
*Specify rigging dimensions when ordering.
**Use with conventional turnbuckle.

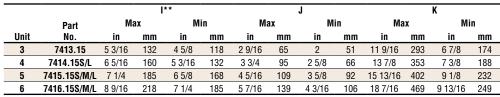
Unit 6

Wire Ø (1 x 19 SS)	Rod Ø	Clevis pin Ø
22, 25 mr	m (7/8", 1")	-76, -91, -115 (17.9, 19.5, 22.2 mm)	31.8, 34.9, 39.7 mm (1 1/4", 1 3/8", 1 9/16")
Headstay Length	Aluminum foil:	standard 28.8 m (94'6"), max 38.8 m (127'6")	
Part No.	Description		
7416.158	Furling system	with aluminum foils and small bushings; fits -76 i	rod
7416.15M	Furling system	with aluminum foils and medium bushings; fits -9	01 rod
7416.15L	Furling system	with aluminum foils and large bushings; fits -115	rod, 22, 25 mm (7/8", 1") wire
Toggle Assembly	Required - sol	d separately	
7416.25 1 1/4	Toggle for 31.8	mm (1 1/4") clevis pin	
7416.25 1 3/8	Toggle for 34.9	mm (1 3/8") clevis pin	
7416.25 1 9/16	Toggle for 39.7	mm (1 9/16") clevis pin	
7416.25 X X/X*	Toggle for all o	ther clevis pin sizes (customer supplied dimension	ns)
Optional Parts			
7416.30	Extra 3.35 m (*	1') aluminum foil extrusion	
7416.31\$	Extra 330 mm	(13") connector with small bushings; fits -76 rod	
7416.31M	Extra 330 mm	(13") connector with medium bushings; fits -91 ro	d
7416.31L	Extra 330 mm	(13") connector with large bushings; fits -115 rod,	22, 25 mm (7/8", 1") wire

Contact Harken to request quote and lead time.

*Specify rigging dimensions when ordering.

Hydraulic Furling Dimensions


										E**				
	Part	A		В		C		D	*	Ma	IX	Mi	n	
Unit	No.	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	
3	7413.15	7 5/16	186	12	300	8 1/4	209	3 1/4	80	47 9/16	1209	47	1194	
4	7414.15S/L	8 15/16	227	14 1/4	360	8 7/8	225	4 1/2	115	55 1/2	1409	54 3/8	1381	
5	7415.15S/M/L	10 1/2	267	17	430	10 3/8	264	5	120	63 1/2	1613	62 13/16	1596	
6	7416.15S/M/L	12 1/2	314	20 1/2	520	11 3/16	285	6 5/16	160	67 3/8	1711	66 1/16	1679	

^{*}From boltrope

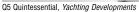
^{**}If hydraulic cylinder is used, dimensions E through I will increase according to cylinder length and settings. See cylinder length addition chart. See installation manual for detailed cylinder dimension information.

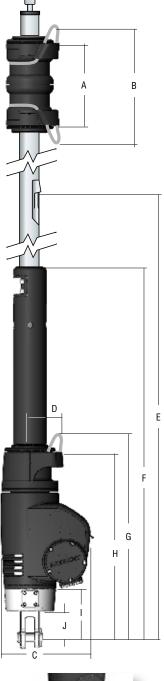
		F**					G	**		H**			
	Part	Max		Min		Max		Min		Max		Min	
Unit	No.	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
3	7413.15	32 7/8	836	32 5/16	821	18 7/8	480	18 1/2	470	16 11/16	424	16 1/8	409
4	7414.15S/L	38 1/4	971	37 1/8	943	22 1/4	565	21 1/4	540	19 11/16	500	18 9/16	472
5	7415.15S/M/L	. 41 11/16	1059	41	1042	27 1/2	700	26 3/4	680	24 1/2	619	23 11/16	602
6	7416.15S/M/L	46 9/16	1183	45 1/4	1150	30 3/8	770	28 3/4	730	26 1/4	666	25	634

^{**}If hydraulic cylinder is used, dimensions E through I will increase according to cylinder length and settings. See cylinder length addition chart. See installation manual for detailed cylinder dimension information.

^{**}If hydraulic cylinder is used, dimensions E through I will increase according to cylinder length and settings. See cylinder length addition chart. See installation manual for detailed cylinder dimension information.

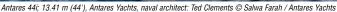
Cylinder Length Addition


1		Add min	length	Add max	length	Stroke length		
	Unit	in	mm	in	mm	in	mm	
	3	14 7/8	378	19	483	4	100	
	4	16 1/4	413	21 5/8	549	5	125	
	5	18 7/8	479	24 7/8	631	6	150	
	6	21 1/16	535	28 7/16	722	7	175	


Foil Dimensions

	Part	L		M	√I Fo		ength	Luff tape*		
Unit	No.	in	mm	in	mm	ft	m	in	mm	
3	7413.30	1 1/2	38	1 11/16	43	7'	2.13	#6 (6/32)	5	
4	7414.30	1 3/4	44	1 27/32	47	7'	2.13	#6 (6/32)	5	
5	7415.30	2 13/32	61	2 5/8	63	9'	2.74	#6 (6/32), #7 (7/32)	5, 6	
6	7416.30	3 3/16	82	3 9/32	83	11'	3.35	#6 (6/32), #7 (7/32)	5, 6	

 $^{{}^{\}star}$ Nominal dimensions only, actual luff tape dimensions are larger.


Furling Accessories

Harken offers halyard restrainers and halyard deflectors. The halyard restrainer installs on the mast near the top of the foil to keep the line against the mast, preventing halyard wrap when furling. The halyard deflector installs on the stay above the foil system, preventing the jib halyard (and additional halyards) from wrapping around the foil.

Also available are stanchion-mount bases for Carbo and Classic blocks, as well prefeeders and snap shackles to facilitate fast sail changes.

7431

Part			Sheave Ø		Weight		Max line Ø		mum g load	
No.	Description	in	mm	0Z	g	in	mm	lb	kg	Use with
061	Stanchion mount base			2	57			350	159	22, 25 mm (7/8", 1") stanchions
448	Halyard lead block	1 1/2	38	2.1	60	3/8	10	300	136	0/1/2
884	Snap shackle			2.3	65			1500	680	00AL, MKIV 0/1
885	Snap shackle			5	141			2300	1040	MKIV 2
891	Small Boat furling snap shackle			2.3	65			950	431	163, 165, 1134, 434, 435, 483
944	Halyard restrainer**	15/16	25	3	85					00AL/0/1
945	Halyard restrainer**	1 1/4	31	6	170					2/3/3.25
7301	Halyard deflector			1.6	45					MKIV and MKIV Ocean Unit 0
7302	Halyard deflector			2.4	68					MKIV and MKIV Ocean Unit 1
7303	Halyard deflector			4.8	136					MKIV and MKIV Ocean Unit 2
7304	Halyard deflector			8	227					MKIV and MKIV Ocean Unit 3
947	Prefeeder			1	28					All
7006	Carbo racing foil prefeeder			3	85					All
7408	Stanchion mount base			2	57			350	159	28.5 mm (1 1/8") stanchions
7430	Powered furling crank handle			7	198					Electric/hydraulic furling
7431	Powered furling drill adapter			2.5	71					Electric/hydraulic furling

^{*}Stanchion mount base fits Classic Bullet, Big Bullet, 2.25", 57 mm Carbo single blocks, and ratchet blocks with swivel post. **#10 RH (5 mm) fasteners.

SnubbAir

It looks like a winch. It mounts like a winch. It cranks like a winch. It's not a winch.

First designed to solve a deck layout challenge unique to the J/70, the Harken SnubbAir might look like a smaller, more efficient version of the winch it replaces. But the product has so many potential applications it defies classification as a winch.

It could act more like a really large ratcheting foot, cheek block, or even a ratcheting line diverter in the pit. The SnubbAir provides lots of line-holding power even without a winch handle. That muscle could become very popular on an A Scow or a powered-up sport boat where the spinnakers can be more than a handful. Even better, you can just flip the sheet off the drum and jibe. If you need even more holding power, wrap the sheet around the SnubbAir twice or use a winch handle with the optional adapter.

SnubbAir comes with four integral threaded studs placed to precisely match the bolt pattern of the B8A winch on the J/70 deck. Start-to-finish, swapping out winches for SnubbAirs takes less than 10 minutes. All washers and Nylok® nuts required for mounting are included.

Use the optional winch handle adapter to crank the SnubbAir like a winch.

The SnubbAir is smaller and lighter than the winch it replaces.

1300

1301

Handle Adapter

Part		Wei	ght	
No.	Description	0Z	g	Use with
1301	Winch handle adapter	1.8	51	1300

SnubbAir

Part		Dru Ø	im Í	Ba	ise Ø	He	ight	We	ight		ener cle	Fasteners	Maxi holdin	
No.	Description	in	mm	in	mm	in	mm	0Z	g	in	mm	mm	lb	kg
1300	SnubbAir	3.12	79.2	4.48	113.8	2.71	68.8	17.3	489	3.57	90.7	4 x M6	1000	454

RADIAL LINE WINCHES

Harken Radial Line winches have successfully balanced the need for a secure grip and line longevity with smooth, controlled easing while under load. Details sailors will appreciate: smaller winches that carry higher loads, stress-free seasonal maintenance, and one-person installation with easy upgrades to power. Nine sizes in multiple styles and finishes: aluminum, chrome, and bronze; 1-, 2-, and 3-speed self-tailing; manual, electric, or hydraulic drives.

Maximum holding power with minimum line wear

 Nonabrasive diagonal ribs on gripping surface hold line securely and reduce line wear; ribs shaped for each winch size and drum material.

Smooth, controlled easing

 Patented angle of ribs drives line wraps down when easing to keep them on area of drum that provides best control.

High-strength, lightweight

- Weight savings of 25 to 50 percent compared to Harken Classic winch line.
- High-strength composite roller bearings and bushings reduce friction under load.
- Load-carrying gears and pins are 17-4 PH stainless steel for strength, corrosion resistance.

Adjustable stripper arm integrated into winch top for safer operation

- Stripper arm completely covers rotating winch top, preventing fingers and clothing from catching in moving parts.
- Adjusts to multiple positions after the winch is mounted to optimize line exit.
- Shaped to smoothly feed line in and out of self-tailing jaws.

Power-grip jaws shaped for easy line entry, optimum hold

- Upper jaw adjusts under line pressure; accepts a variety of line sizes.
- Teeth grip evenly with or without load.

Simple to install, easy maintenance

- Patented mounting system for fast, one-person installation without removing drum.
 - a. Snap off the skirt at the base of the winch.
- b. Slide bolts through the slots in the winch base and snap the plastic skirt back on.
- c. Place the stud bolts into the predrilled holes on the deck and tighten from belowdeck.
- Snap-fit design keeps bearings captive when drum is removed for maintenance.
- Easy to disassemble for service on deck; socket, washer, and screw-top snap-fit together for mistake-free reassembly.
- Composite roller bearings don't require lubrication.

Powered Options

- Electric: vertical-mount motors; horizontal-mount motors offered with right- or left-mount option.
- · Hydraulic: vertical-mount motor.

Easy upgrade from manual to power

- Manual winches easily convert to powered using patented conversion method.
- No adapter plate required; identical stud pattern to mount winches of the same size without drilling new holes in deck.

 A predrilled hole in deck by builder simplifies manual-to-electric conversion; removable gaskets offered to seal holes until upgrade is made.

Energy-efficient motors accomplish more work per unit of electricity consumed

- Motors attach to central drive shaft and drive through winch gears for two-speed mechanical advantage.
- Low-power first gear for fast trimming; higher-power second gear for fine-tuning loaded sheets.

 Efficient design allows smaller motor size.

Manual override in case of power loss

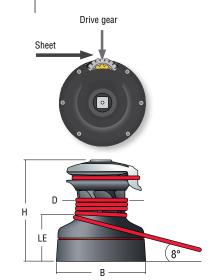
 Harken locking handle inserted into an unloaded winch automatically disconnects motor gear for manual operation.

Aluminum & Chrome Radial Winches

About Radial winches: see feature pages at beginning of this section.

Series 15 and 20 winches use composite bushings to handle high loads in a small package.

WHY DOES MY CHROME RADIAL **LINE WINCH HAVE A DIFFERENT GRIP PATTERN THAN AN ALUMINUM RADIAL LINE WINCH?**


Chrome has a more slippery finish than aluminum, so the ribs on chrome winches are spaced closer together to increase friction. This optimizes your grip for trimming as well as for easing the sail in a smooth, controlled manner.

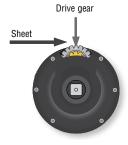
CHROME RADIAL

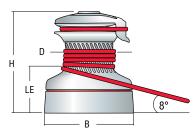
			Ø						Line	ntrv		Lir	ne Ø		Faste	ner	Faste	ners						
Part	Drum	ı (D)	Base	(B)	Heigh	t (H)	We	ight	height		M	in	Ma	ìχ	circ		(SH o		G	ear rat	io	Po	wer rat	tio
No.	in	mm	in	mm	in	mm	lb	kg	in	mm	in	mm	in	mm	in	mm	in	mm	1	2	3	1	2	3
Alumin	um Rac	iial																						
15STA	2 7/8	73	4 3/4	120	5 1/2	139	4.6	2.1	2 1/4	58	1/4	6	3/8	10	3 15/16	100	5 x 1/4*	5 x 6	2.43			16.90		
20STA	2 7/8	73	5 3/8	137	5 13/16	148	5.3	2.4	2 3/8	61	1/4	6	1/2	12	4 3/8	110	5 x 1/4*	5 x 6	2.76			19.20		
35.2STA	3 1/8	80	5 7/8	149	6 11/16	170	7.9	3.6	3 1/8	79	5/16	8	1/2	12	4 7/8	123	5 x 1/4*	5 x 6	2.13	5.65		13.50	35.90	
40.2STA	3 1/8	80	6 3/16	157	6 7/8	175	8.4	3.8	3 1/4	82	5/16	8	1/2	12	4 7/8	123	5 x 1/4*	5 x 6	2.13	6.28		13.50	39.90	
46.2STA	3 7/8	100	7 1/4	184	7 15/16	201	11.5	5.2	3 9/16	90	5/16	8	9/16	14	5 7/8	150	5 x 5/16	5 x 8	2.30	9.17		11.70	46.50	
50.2STA	4 5/16	110	7 5/8	194	8 5/16	212	13.2	6	3 7/8	97	5/16	8	9/16	14	5 7/8	150	5 x 5/16	5 x 8	2.40	10.90		10.90	50.40	
60.2STA	4 3/4	120	9 5/16	236	9 11/16	246	22.5	10.2	4 9/16	116	5/16	8	5/8	16	8	204	6 x 5/16	6 x 8	4.80	14.40		20.30	61.00	
60.3STA	4 3/4	120	9 5/16	236	9 11/16	246	25.8	11.7	4 9/16	116	5/16	8	5/8	16	8	204	6 x 5/16	6 x 8	2.20	4.80	14.40	9.20	20.30	61.00
70.2STA	5 1/8	130	9 7/16	240	10 1/16	256	24.9	11.3	4 1/2	115	3/8	10	11/16	18	8 1/8	205	6 x 5/16			18.50		22.20		
70.3STA	5 1/8	130	9 7/16	240	10 1/16	256	28.3	12.8	4 1/2	115	3/8	10	11/16	18	8 1/8	205	6 x 5/16	6 x 8	2.30	5.70	18.50	9.00	22.20	72.00
80.2STA	6 7/8	175	11 5/16	287	12 9/16		46.8		6 7/16	164	3/8	10	11/16	18	9 3/16	233	8 x 3/8	8 x 10	9.94	32.12		28.85	93.24	
80.3STA	6 7/8	175	11 5/16	287	12 9/16	320	50.1	22.7	6 7/16	164	3/8	10	11/16	18	9 3/16	233	8 x 3/8	8 x 10	2.76	9.94	32.12	8.01	28.85	93.24
Chrome	e Radia	I																						
20STC	2 7/8	73	5 3/8	137	5 13/16	148	7.5	3.4	2 3/8	61	1/4	6	1/2	12	4 3/8	110	5 x 1/4*	5 x 6	2.76			19.20		
35.2STC	3 1/8	80	5 7/8	149	6 11/16	170	10.6	4.8	3 1/8	79	5/16	8	1/2	12	4 7/8	123	5 x 1/4*	5 x 6	2.13	5.65		13.50	35.90	
40.2STC	3 1/8	80	6 3/16	157	6 7/8	175	11.9	5.4	3 1/4	82	5/16	8	1/2	12	4 7/8	123	5 x 1/4*	5 x 6	2.13	6.28		13.50	39.90	
46.2STC		100	7 1/4	184	7 15/16	201	17.2	7.8	3 9/16	90	5/16	8	9/16	14	5 7/8	150	5 x 5/16		2.30	9.17		11.70		
50.2STC		110	7 5/8	194	8 5/16	212	20.3	9.2	3 7/8	97	5/16	8	9/16	14	5 7/8	150	5 x 5/16			10.90		10.90		
60.2STC	4 3/4	120	9 5/16	236	9 11/16	246	30.7	13.9	4 9/16	116	5/16	8	5/8	16	8	204	6 x 5/16	6 x 8	4.80	14.40		20.30	61.00	
60.3STC		120	9 5/16	236	9 11/16	246	34		4 9/16	116	5/16	8	5/8	16	8	204	6 x 5/16		2.20		14.40		20.30	61.00
70.2STC		130	9 7/16	240	10 1/16		33.3	15.1	4 1/2	115	3/8	10	11/16	18	8 1/8	205	6 x 5/16			18.50		22.20		
70.3STC		130	9 7/16	240			36.6	16.6	4 1/2	115	3/8	10	11/16	18	8 1/8	205	6 x 5/16		2.30		18.50		22.20	72.00
80.2STC		175	11 5/16	287	12 9/16	320	63.4		6 7/16	164	3/8	10	11/16	18	9 3/16	233		8 x 10		32.12		28.85		
80.3STC	6 7/8	175	11 5/16	287	12 9/16	320	66.7	30.2	6 7/16	164	3/8	10	11/16	18	9 3/16	233	8 x 3/8	8 x 10	2.76	9.94	32.12	8.01	28.85	93.24

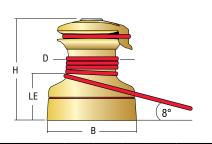
White & All-Chrome Radial Winches

About Radial winches: see feature pages at beginning of this section.

CLASSIC PLAIN-TOP CHROME




Polar Bear, 8.36 m (27.43'), Chantier des lleaux, naval architect: Paolo Bua © Valerie Lanata

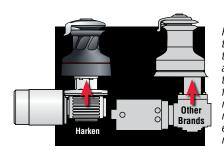

VHITE RADIAL	ALL-CHROME RADIA
VIIII E IIADIAE	ALL OTHIOME HADIA

D1	Drum		Ø Base	(R)	Height	: (U)	Wei	aht	Line (М		ne Ø Ma	v	Faste		Faster (SH or		G	ear rat	io	Po	wer rat	io
Part No.	in	mm	in	mm	in	mm	lb	kg	in	mm		''' mm		mm	in	mm	in	mm	1	2	3	1	wei iai 2	3
Chrome C				111111			-10	кy													Ů			<u> </u>
B6CCA	2 3/8	60	3 9/16	90	3 1/4	82	2.9	1.3	1 5/16	33					2 9/16	65	6 x 1/4**	6 x 6**	1			8.4		
B8CCA	2 11/16	68	4 1/2	115	3 9/16	90	4.6	2.1	1 1/2	38					3 9/16	90	4 x 5/16**		1			7.5		
White Ra																								
20STCW	2 7/8	73	5 3/8	137	5 13/16	148	7.5	3.4	2 3/8	61	1/4	6	1/2	12	4 3/8	110	5 x 1/4*	5 x M6	2.76			19.20		
35.2STCW	3 1/8	80	5 7/8	149	6 11/16	170	10.6	4.8	3 1/8	79	5/16	8	1/2	12	4 7/8	123	5 x 1/4*	5 x M6	2.13	5.65		13.50	35.90	
40.2STCW	3 1/8	80	6 3/16	157	6 7/8	175	11.9	5.4	3 1/4	82	5/16	8	1/2	12	4 7/8	123	5 x 1/4*	5 x M6	2.13	6.28		13.50	39.90	
46.2STCW	3 7/8	100	7 1/4	184	7 15/16	202	17.2	7.8	3 9/16	90	5/16	8	9/16	14	5 7/8	150	5 x 5/16	5 x M8	2.30	9.17		11.70	46.50	
50.2STCW	4 5/16	110	7 5/8	194	8 5/16	212	20.3	9.2	3 7/8	97	5/16	8	9/16	14	5 7/8	150	5 x 5/16	5 x M8	2.40	10.90		10.90	50.40	
60.2STCW	4 3/4	120	9 5/16	236	9 11/16	246	30.7	13.9	4 9/16	116	5/16	8	5/8	16	8	204	6 x 5/16	6 x M8	4.80	14.40		20.30	61.00	
60.3STCW	4 3/4	120	9 5/16	236	9 15/16	253	34	15.4	4 9/16	116	5/16	8	5/8	16	8	204	6 x 5/16	6 x M8	2.20	4.80	14.40	9.20	20.30 6	51.00
70.2STCW	5 1/8	130	9 7/16	240	10 1/16	256	33.3	15.1	4 1/2	115	3/8	10	11/16	18	8 1/8	205	6 x 5/16	6 x M8	5.70	18.50		22.20	72.00	
70.3STCW	5 1/8	130	9 7/16	240	10 3/8	264	36.6	16.6	4 1/2	115	3/8	10	11/16	18	8 1/8	205	6 x 5/16	6 x M8	2.30	5.70	18.50	9.00	22.20 7	72.00
All-Chron	ne Radia	l: plai	in-top																					
20.2PTCCC	2 7/8	73	5 3/8	137	5 1/16	128	7.9	3.6	2 3/8	61					4 3/8	110	5 x 1/4*	5 x M6	1.00	2.76		6.95	19.20	
35.2PTCCC	3 1/8	80	5 7/8	149	5 13/16	148	11.5	5.2	3 1/8	79					4 7/8	123	5 x 1/4*	5 x M6	2.13	5.65		13.50	35.90	
40.2PTCCC	3 1/8	80	6 3/16	157	6	153	13.5	6.1	3 1/4	82					4 7/8	123	5 x 1/4*	5 x M6	2.13	6.28		13.50	39.90	
46.2PTCCC	3 7/8	100	7 1/4	184	7 1/16	179	21.4		3 9/16	90					5 7/8	150	5 x 5/16	5 x M8				11.70		
50.2PTCCC	4 5/16	110	7 5/8	194	7 1/2	190	25.6	11.6	3 7/8	97					5 7/8	150	5 x 5/16	5 x M8	2.40	10.90		10.90	50.40	
All-Chron																								
20STCCC	2 7/8	73	5 3/8	137	5 13/16		8.6	3.9	2 3/8	61	1/4	6	1/2	12	4 3/8	110	5 x 1/4*	5 x M6				19.20		
35.2STCCC	3 1/8	80	5 7/8	149	6 11/16		12.1	5.5	3 1/8	79	5/16	8	1/2	12	4 7/8	123	5 x 1/4*	5 x M6				13.50		
40.2STCCC	3 1/8	80	6 3/16	157	6 7/8	175	13.7	6.2	3 1/4	82	5/16	8	1/2	12	4 7/8	123	5 x 1/4*	5 x M6		6.28		13.50		
46.2STCCC	3 7/8	100	7 1/4	184		202	19.6	8.9	3 9/16	90	5/16	8	9/16	14	5 7/8	150	5 x 5/16	5 x M8				11.70		
50.2STCCC	4 5/16	110	7 5/8	194		212	22.9	10.4		97	5/16	8	9/16	14	5 7/8	150	5 x 5/16	5 x M8				10.90		
60.2STCCC	4 3/4	120	9 5/16	236	9 11/16		33.9		4 9/16	116	5/16	8	5/8	16	8	204	6 x 5/16	6 x M8				20.30		21.22
60.3STCCC	4 3/4	120	9 5/16	236	9 3/8	253	37.3		4 9/16	116	5/16	8	5/8	16	8	204	6 x 5/16	6 x M8					20.30 6	31.00
70.2STCCC	5 1/8	130	9 7/16	240		256	36.8	16.7	4 1/2	115	3/8	10	11/16		8 1/8	205	6 x 5/16	6 x M8				22.20		
70.3STCCC	5 1/8	130	9 7/16	240	10 3/8	264	40.1	18.2	4 1/2	115	3/8	10	11/16	18	8 1/8	205	6 x 5/16	6 x M8	2.30	5.70	18.50	9.00	22.20 7	72.00

*SH only. **FH only.

Bronze Radial Winches

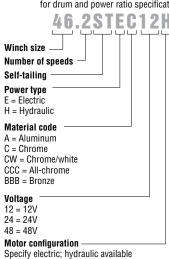
About Radial winches: see feature pages at beginning of this section.



	Drum		Ø Page	(D)	Heigh	+ /U\	Wei	aht	Line o		Mi	Lin	e Ø Ma		Faste		Faste (SH o		c	ear rat	io	Do.	wer rat	tio.
Part No.	in	mm	Base in	mm	in	mm	Ib	kq	in	mm	_	mm	_	mm	in	mm	in	mm	1	2	3	1	wei iai	3
Bronze Cl							10	кy											<u> </u>		Ů			
B6BBA	2 3/8	60	3 9/16	90	3 1/4	82	2.9	1.3	1 5/16	33					2 9/16	65	6 x 1/4**	6 × 6**	1			8.4		
B8BBA	2 11/16	68	4 1/2	115	3 9/16	90	4.6	2.1	1 1/2	38					3 9/16	90	4 x 5/16**		1			7.5		
Bronze Ra			, _	113	3 3/10	90	4.0	2.1	1 1/2	30				_	3 3/10	90	4 / 3/10	4 7 0				7.5		
20.2PTBBB	2 7/8	73	5 3/8	137	5 1/16	128	7.9	3.6	2 3/8	61					4 3/8	110	5 x 1/4*	5 x M6	1	2.76		6.05	19.20	
				_		_										123			0.10					
35.2PTBBB	3 1/8	80	5 7/8	149	5 13/16	148	11.5	5.2	3 1/8	79					4 7/8		5 x 1/4*	•	2.13	5.65		13.50		
40.2PTBBB	3 1/8	80	6 3/16	157	6	153	13.5	6.1	3 1/4	82					4 7/8	123	5 x 1/4*	5 x M6	2.13	6.28		13.50		
46.2PTBBB	3 7/8	100	7 1/4	184	7 1/16	179	21.4	9.7	3 9/16	90					5 7/8	150	5 x 5/16	5 x M8	2.30	9.17		11.70	46.50	
50.2PTBBB	4 5/16	110	7 5/8	194	7 1/2	190	25.6	11.6	3 7/8	97					5 7/8	150	5 x 5/16	5 x M8	2.40	10.90		10.90	50.40	
Bronze Ra	idial: se	lf-tai	ling																					
20STBBB	2 7/8	73	5 3/8	137	5 13/16	148	8.6	3.9	2 3/8	61	1/4	6	1/2	12	4 3/8	110	5 x 1/4*	5 x M6	2.76			19.20		
35.2STBBB	3 1/8	80	5 7/8	149	6 11/16	170	12.1	5.5	3 1/8	79	5/16	8	1/2	12	4 7/8	123	5 x 1/4*	5 x M6	2.13	5.65		13.50	35.90	
40.2STBBB	3 1/8	80	6 3/16	157	6 7/8	175	13.7	6.2	3 1/4	82	5/16	8	1/2	12	4 7/8	123	5 x 1/4*	5 x M6	2.13	6.28		13.50	39.90	
46.2STBBB	3 7/8	100	7 1/4	184	7 15/16	202	19.6	8.9	3 9/16	90	5/16	8	9/16	14	5 7/8	150	5 x 5/16	5 x M8	2.30	9.17		11.70	46.50	
50.2STBBB	4 5/16	110	7 5/8	194	8 5/16	212	22.9	10.4	3 7/8	97	5/16	8	9/16	14	5 7/8	150	5 x 5/16	5 x M8	2.40	10.90		10.90	50.40	
60.2STBBB	4 3/4	120	9 5/16	236	9 11/16	246	33.9	15.4	4 9/16	116	5/16	8	5/8	16	8	204	6 x 5/16	6 x M8	4.80	14.40		20.30	61.00	
60.3STBBB	4 3/4	120	9 5/16	236	9 3/8	253	37.3	16.9	4 9/16	116	5/16	8	5/8	16	8	204	6 x 5/16	6 x M8	2.20	4.80	14.40	9.20	20.30	61.00
70.2STBBB	5 1/8	130	9 7/16	240	10 1/16	256	36.8	16.7	4 1/2	115	3/8	10	11/16	18	8 1/8	205	6 x 5/16	6 x M8	5.70	18.50		22.20	72.00	
70.3STBBB	5 1/8	130	9 7/16	240	10 3/8	264	40.1	18.2	4 1/2	115	3/8	10	11/16	18	8 1/8	205	6 x 5/16	6 x M8	2.30	5.70	18.50	9.00	22.20	72.00

^{*}SH only. **FH only.

Electric & Hydraulic Motors

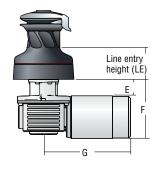

Harken now offers 48V motors to accommodate the increase in requests from boat builders are offering these electrical systems most often reflecting improvements in battery technology. These systems reduce wattage lost to electrical resistance across the run while also allowing for the use of smaller, lighter cables.

Harken electric and hydraulic motors attach to the central drive shaft and drive through the winch gears for a two-speed mechanical advantage — the low-power first gear for fast trimming, the higher-power second gear for fine-tuning loaded sheets. This results in reduced battery drain and a more efficient motor on the electric version. The energy-efficient hydraulic version is also smaller, reducing weight and cost.

Part Numbers

Specify power type, material, voltage, and motor configuration when ordering. Refer to manual self-tailing Radial winch pages for drum and power ratio specifications.

in vertical only. H = Horizontal V = Vertical


196

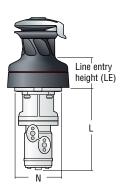
Electric & Hydraulic Motors

Specify power type, material, voltage, and motor configuration when ordering. See part number explanation. About Radial winches: see feature pages at beginning of this section.

Dimensions

													We	ight		
	E		F		G		L		1	V	1	4	(C	BBB	/CCC
Part No.	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg	lb	kg	lb	kg
Electric																
35.2STEH	1 3/4	43	6 1/8	155	8 7/8	227					29.3	13.3	32	14.5	33.5	15.2
40.2STEH	1 3/4	43	6 1/8	155	8 7/8	227					29.7	13.5	33.2	15.1	35	15.9
46.2STEH	1 3/4	43	6 1/8	155	8 7/8	227					32.8	14.9	38.5	17.5	41	18.6
46.2STEV							15 3/8	391	6 1/8	157	36.9	16.7	42.6	19.3	45	20.4
50.2STEH	2 3/4	69	7 1/8	181	9 5/8	244					37.1	16.8	44.2	20	46.7	21.2
50.2STEV							15 3/8	391	6 1/8	157	38.6	17.5	45.7	20.7	48.3	21.9
60.2STEH	2 3/4	69	7 1/8	181	9 5/8	244					46.4	21	54.5	24.7	57.8	26.2
60.2STEV							15 3/8	391	6 1/8	157	47.9	21.7	56.1	25.4	59.3	26.9
60.3STEH	2 3/4	69	7 1/8	181	9 5/8	244					49.7	22.5	57.8	26.2	61	27.7
60.3STEV							15 3/8	391	6 1/8	157	51.2	23.2	59.4	26.9	62.6	28.4
70.2STEH	2 3/4	69	7 1/8	181	9 5/8	244					48.8	22.1	57.2	25.9	60.6	27.5
70.2STEV							15 3/8	391	6 1/8	157	50.3	22.8	58.7	26.6	62.2	28.2
70.3STEH	2 3/4	69	7 1/8	181	9 5/8	244					52.1	23.6	60.5	27.4	63.9	29
70.3STEV							15 3/8	391	6 1/8	157	53.6	24.3	62	28.1	65.5	29.7
80.2STEH	3 3/16	81	8 11/16	221	10 11/16	272					70.6	32	87.2	39.5		
80.2STEV							16 13/16	427	6 3/4	172	72.2	32.7	88.7	40.2		
80.3STEH	3 3/16	81	8 11/16	221	10 11/16	272				-	74	33.5	90.5	41		
80.3STEV							16 13/16	427	6 3/4	172	75.5	34.2	92.1	41.7		

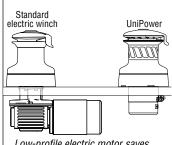
Hydraulic										
46.2STH	9 1/4	234	5 1/8	130	28	12.7	33.8	15.3	36.2	16.4
50.2STH	9 1/4	234	5 1/8	130	29.8	13.5	36.9	16.7	39.5	17.9
60.2STH	9 1/4	234	5 1/8	130	39.1	17.7	47.2	21.4	50.5	22.9
60.3STH	9 1/4	234	5 1/8	130	42.4	19.2	50.6	22.9	53.8	24.4
70.2STH	9 1/4	234	5 1/8	130	41.5	18.8	49.9	22.6	53.4	24.2
70.3STH	9 1/4	234	5 1/8	130	44.8	20.3	53.2	24.1	56.7	25.7
80.2STH	9 7/8	250	5 1/8	130	66.4	30.1	83	37.6		
80.3STH	9 7/8	250	5 1/8	130	69.8	31.6	86.3	39.1		


	Line entry height (LI
E	
N	

	Electric motor	configuration	No	ominal volta	ge		Power in wat	ts
Winch size	Horizontal(STEH)	Vertical(STEV)	12V	24V	48V	12V	24V	48V
35.2 - 40.2	V	_	~	V	~	700	900	2000
46.2	V	/	~	~	~	700	900	2000
50.2	V	V	~	~	/	1500	2000	2000
60.2 - 60.3	V	V	~	~	~	1500	2000	2000
70.2 - 70.3	V	V	~	~	~	1500	2000	2000
80.2 - 80.3	✓	✓	~	/	~	1500	2000	2000

Electric Wire Gauges

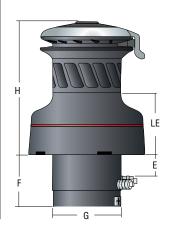
Total distance between winch and battery


Winch	Current	Under 16.4'	Under 5 m	16.4 - 32.8'	5 - 10 m	32.8 - 49.2'	10 - 15 m	49.2 - 65.6'	15 - 20 m
size	voltage	AWG	mm²	AWG	mm²	AWG	mm²	AWG	mm²
35.2 - 40.2	12V	2	32	0	50	00	70	000	95
35.2 - 40.2	24V	5	16	4	25	2	35	0	50
35.2 - 40.2	48V	8	10	6	16	6	16	4	25
46.2	12V	2	32	0	50	00	70	000	95
46.2	24V	5	16	4	25	2	35	0	50
46.2	48V	8	10	6	16	6	16	4	25
50.2	12V	2	32	0	50	00	70	000	95
50.2	24V	5	16	4	25	2	35	0	50
50.2	48V	8	10	6	16	6	16	4	25
60.2 - 60.3	12V	2	32	0	50	00	70	000	95
60.2 - 60.3	24V	5	16	4	25	2	35	0	50
60.2 - 60.3	48V	8	10	6	16	6	16	4	25
70.2 - 70.3	12V	2	32	0	50	00	70	000	95
70.2 - 70.3	24V	5	16	4	25	2	35	0	50
70.2 - 70.3	48V	8	10	6	16	6	16	4	25
80.2 - 80.3	12V	2	32	0	50	00	70	000	95
80.2 - 80.3	24V	5	16	4	25	2	35	0	50
80.2 - 80.3	48V	8	10	6	16	6	16	4	25

UniPower Winches

The UniPower is a single-speed winch that combines the advantages of a low-profile manual winch with the power of a 12-, 24-, or 48-volt, low-amp-draw motor. What makes it unique is that the motor is partially imbedded inside the drum, so that it extends only 105 mm (4 1/8") below the winch base—a critical feature for small boats where space under the cabintop is limited.

About Radial winches: see feature pages at beginning of this section.



Low-profile electric motor saves headspace.

Works with handle if power is unavailable.

Dimensions

	Line (E	E	F		G	ì
Part No.	in	mm	in	mm	in	mm	in	mm
500UPWA/C	3 1/4	83	1 7/8	48	3	76	3 5/16	85
900UPWA/C/CW/CCC/BBB	3 15/16	100	1 3/8	35	4 1/8	105	5 1/2	140

			Ø							Lin	ie Ø		Faste	ener	Faste	ners		
Part	Dru	ım	Ba	se	Heigh	ıt (H)	We	ight	M	in	M	ax	circ	le	(SH o	r HH)	Max	pull
No.	in	mm	in	mm	in	mm	lb	kg	in	mm	in	mm	in	mm	in	mm	lb	kg
500UPWA	3 7/8	99	5 3/4	146	7 7/8	200	15	6.7	5/16	8	9/16	14	4 7/8	123	5 x 1/4	5 x M6	1102	500
500UPWC	3 7/8	99	5 3/4	146	7 7/8	200	18	8.3	5/16	8	9/16	14	4 7/8	123	5 x 1/4	5 x M6	1102	500
900UPWA	4 3/8	110	7 1/2	190	8 1/2	215	26.5	12	5/16	8	9/16	14	6 5/16	160	5 x 5/16	5 x M8	1984	900
900UPWC	4 3/8	110	7 1/2	190	8 1/2	215	32	14.5	5/16	8	9/16	14	6 5/16	160	5 x 5/16	5 x M8	1984	900
900UPWCW	4 3/8	110	7 1/2	190	8 1/2	215	32	14.5	5/16	8	9/16	14	6 5/16	160	5 x 5/16	5 x M8	1984	900
900UPWCCC	4 3/8	110	7 1/2	190	8 1/2	215	34.6	15.7	5/16	8	9/16	14	6 5/16	160	5 x 5/16	5 x M8	1984	900
900UPWBBB	4 3/8	110	7 1/2	190	8 1/2	215	34.6	15.7	5/16	8	9/16	14	6 5/16	160	5 x 5/16	5 x M8	1984	900

Rewind Electric Winches

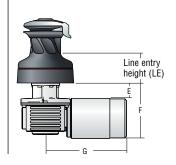
The Rewind Radial electric winch is the latest in Harken's "easy sailing" solutions for cruisers, and the first winch of its kind in the marine market. Activated remotely by twin in/out buttons, the Rewind safely eases and trims highly-loaded sails in both directions without ever taking the line out of the self-tailer.

Like all Harken electric winches, the Rewind operates like a normal 2-speed electric winch. A simple flip of the red knob on the winch base turns on the rewind feature. A spring-loaded arm of investment-cast stainless steel funnels and keeps line captive as it feeds in and out of the self-tailer as the sail is adjusted with fingertip control.

Available in 12-, 24-, and 48-volts.

About Radial winches: see feature pages at beginning of this section.

Part	Line heigh		Е			:		G
No.	in	mm	in	mm	in	mm	in	mm
40RWA/C/CW/CCC/BBB	3 1/4	82	1 3/4	43	6 1/8	155	11	280
46RWA/C/CW/CCC/BBB	3 9/16	90	1 3/4	43	6 1/8	155	11	280
60BWA/C/CW/CCC/BBB	4 9/16	116	2 3/4	69	7 1/8	181	11	280


A Harken locking handle inserted into an unloaded winch automatically disconnects the motor gear for manual operation.

Activated remotely by twin in/out buttons, the Rewind winch safely eases and trims highly-loaded sails in both directions without ever taking the line out of the self-tailer.

A simple flip of the red knob on the winch base turns on the rewind feature.

			Ø							Lin	e Ø		Fast	ener	Faste	ners				
Part	Dri	um	Ba	se	Hei	ght	We	ight	M	in	M	ax	cir	cle	(SH oı	r HH)	Gear	ratio	Powe	r ratio
No.	in	mm	in	mm	in	mm	lb	kg	in	mm	in	mm	in	mm	in	mm	1	2	1	2
40RWA	3 1/8	80	6 3/16	157	6 7/8	175	32.2	14.6	5/16	8	1/2	12	4 7/8	123	5 x 1/4	5 x 6	2.13	6.28	13.50	39.90
40RWC/CW	3 1/8	80	6 3/16	157	6 7/8	175	35.7	16.2	5/16	8	1/2	12	4 7/8	123	5 x 1/4	5 x 6	2.13	6.28	13.50	39.90
40RWCCC/BBB	3 1/8	80	6 3/16	157	6 7/8	175	37.5	17	5/16	8	1/2	12	4 7/8	123	5 x 1/4	5 x 6	2.13	6.28	13.50	39.90
46RWA	3 7/8	100	7 1/4	184	8	203	35.3	16	3/8	10	9/16	14	5 7/8	150	5 x 5/16	5 x 8	2.30	9.17	11.70	46.50
46RWC/CW	3 7/8	100	7 1/4	184	8	203	41	18.6	3/8	10	9/16	14	5 7/8	150	5 x 5/16	5 x 8	2.30	9.17	11.70	46.50
46RWCCC/BBB	3 7/8	100	7 1/4	184	8	203	43.4	19.7	3/8	10	9/16	14	5 7/8	150	5 x 5/16	5 x 8	2.30	9.17	11.70	46.50
60RWA	4 3/4	120	9 5/16	236	9 11/16	246	48.7	22.1	9/16	14	5/8	16	8	204	6 x 5/16	6 x 8	4.80	14.40	20.30	61.00
60RWC/CW	4 3/4	120	9 5/16	236	9 11/16	246	56.9	25.8	9/16	14	5/8	16	8	204	6 x 5/16	6 x 8	4.80	14.40	20.30	61.00
60RWCCC/BBB	4 3/4	120	9 5/16	236	9 11/16	246	60.2	27.3	9/16	14	5/8	16	8	204	6 x 5/16	6 x 8	4.80	14.40	20.30	61.00

PERFORMA WINCHES

HARKEN

Harken Performa winches combine the high-efficiency of the Radial line with the sandblasted grip of Harken carbon-fiber racing winches for powerful hybrids. Optimized to handle the high-strength line used on sport-boats and performance cruisers, Performa winches are a great solution for crew who don't wish to invest in carbon winches or who need racing winches in smaller sizes. Winches come in self-tailing, plain-top, or Quattro styles; manual, electric (12- or 24-volt), or hydraulic drives. Available in sizes 20 to 80 to complement Harken's carbon line.

Maximum holding power for high-tech line

 Sandblasted drums and ribs optimized for halyard and sheeting applications using small-diameter, high-strength line.

Trim and ease sails quickly and easily

- Patented angle of ribs drives line wraps down when easing to keep them on area of drum that provides best control.
- Transfer high loads to the winch with fewer wraps.

High-strength, lightweight

- Lightweight aluminum drum features an integrated skirt.
- High-strength composite roller and ball thrust bearings reduce friction under load.
- Load-carrying gears and pins are 17-4 PH stainless steel for strength, corrosion resistance.

Quattro model for boats requiring extremely fast winches

- Handles large asymmetrical spinnakers; power to trim genoa upwind.
- 2 speeds + 2 drum diameters = 4 line speeds.

Power-grip jaws shaped for easy line entry, optimum hold

- Narrow composite jaws ensure superior holding power on small-diameter, high-strength line.
- Lower jaw adjusts under line pressure; accepts a variety of line sizes.
- Teeth grip evenly with or without load.

- Stripper arm completely covers rotating winch top, preventing fingers and clothing from catching in moving parts.
- Adjusts to multiple positions after the winch is mounted to optimize line exit.
- Shaped to smoothly feed line in and out of self-tailing jaws.

Simple to install, easy maintenance

- Stud mounting bolts allow fast installation. Drum removes easily with a flathead screwdriver.
- Snap-fit design keeps bearings captive when drum is removed for maintenance.
- Easy to disassemble for service on deck; socket, washer, and screw-top snap-fit together for mistake-free reassembly.
- Composite roller bearings don't require lubrication.

Powered Options

- Electric: vertical-mount motors; horizontal-mount motors offered with right- or left-mount option.
- Hydraulic: vertical-mount motor.

Easy upgrade from manual to power

- Manual winches easily convert to powered using patented conversion method.
- No adapter plate required; identical stud pattern to mount winches of the same size without drilling new holes in deck.

 A predrilled hole in deck by builder simplifies manual-to-electric conversion; removable gaskets offered to seal holes until upgrade is made.

Energy-efficient motors accomplish more work per unit of electricity consumed

- Motors attach to central drive shaft and drive through winch gears for two-speed mechanical advantage.
- Low-power first gear for fast trimming; higher-power second gear for fine-tuning loaded sheets.

 Efficient design allows smaller motor size.

Manual override in case of power loss

 Harken locking handle inserted into an unloaded winch automatically disconnects motor gear for manual operation.

Use plain-top winches on sportboats where sails require frequent trimming. Plain-top winches are best handled by two crew—one to trim and one to tail the line.

SELF-TAILING

Self-tailing winches have narrow composite jaws to ensure superior holding power on small-diameter line. The self-tailing mechanism on the winch means that one crew member can quickly and easily trim or raise sails.

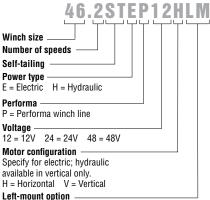
QUATTRO

Use Quattro models for boats requiring extremely fast winches. Quattros handle large asymmetrical spinnakers and provide power to trim genoa upwind. 2 speeds + 2 drum diameters = 4 line speeds.

			<u> </u>						Line e	ntrv		Lin	e Ø		Faste	ner	Faste	ners						—
Part	Drum	(D)	Base	(B)	Heigh	t (H)	Wei	ight	height		Mi	n	Ma	X	circ		(SH or	HH)	G	ear rat	io	Po	wer rat	tio
No.	in	mm	in	mm	in	mm	lb	kg	in	mm	in	mm	in	mm	in	mm	in	mm	_1_	2	3	1	2	3
Classic	Plain-To	p																						
B6A	2 3/8	60	3 9/16	90	3 1/4	82	1.5	0.7	1 5/16	33					2 9/16	65	6 x 1/4 FH	6 x 6 FH	1			8.4		
B8A	2 11/16	68	4 1/2	115	3 9/16	90	2.4	1.1	1 1/2	38					3 9/16	90	4 x 5/16 FH	14 x 8 FH	1			7.5		
Plain-To	op																							
20.2PTP	2 7/8	73	5 3/8	137	5 1/16	128	4.4	2	2 3/8	61					4 3/8	110	5 x 1/4*	5 x M6	1	2.76		6.95	19.2	
35.2PTP	3 1/8	80	5 7/8	149	5 13/16	148	6.8	3.1	3 1/8	79					4 7/8	123	5 x 1/4*	5 x M6	2.13	5.65		13.50	35.90	
40.2PTP	3 1/8	80	6 3/16	157	6	153	7.7	3.5	3 1/4	82					4 7/8	123	5 x 1/4*	5 x M6	2.13	6.28		13.50	39.90	
46.2PTP	3 15/16	100	7 1/4	184	7 1/16	179	11.3	5.1	3 9/16	90					5 7/8	150	5 x 5/16	5 x M8	2.30	9.17		11.70	46.50	
50.2PTP	4 5/16	110	7 11/16	195	7 1/2	190	13	5.9	3 13/16	97					5 7/8	150	5 x 5/16	5 x M8	2.40	10.90		11.10	50.40	
Self-Tai	ling																							
20STP	2 7/8	73	5 3/8	137	5 13/16	148	5.3	2.4	2 3/8	61	1/4	6	1/2	12	4 3/8	110	5 x 1/4*	5 x M6	2.76			19.20		
35.2STP	3 1/8	80	5 7/8	149	6 11/16	170	7.9	3.6	3 1/8	79	5/16	8	1/2	12	4 7/8	123	5 x 1/4*	5 x M6	2.13	5.65		13.50	35.90	
40.2STP	3 1/8	80	6 3/16	157	6 7/8	175	8.4	3.8	3 1/4	82	5/16	8	1/2	12	4 7/8	123	5 x 1/4*	5 x M6	2.13	6.28		13.50	39.90	
46.2STP	3 15/16	100	7 1/4	184	7 15/16	202	11.5	5.2	3 9/16	90	5/16	8	9/16	14	5 7/8	150	5 x 5/16	5 x M8	2.30	9.17		11.70	46.50	
50.2STP	4 5/16	110	7 11/16	195	8 5/16	212	13.2	6	3 13/16	97	5/16	8	9/16	14	5 7/8	150	5 x 5/16	5 x M8	2.40	10.90		11.10	50.40	
50.3STP	4 5/16	110	7 11/16	195	8 5/16	212	15.0	6.8	3 13/16	97	5/16	8	9/16	14	5 7/8	150	5 x 5/16	5 x M8	_1_	2.40	10.90	4.62	11.10	50.40
60.2STP	4 3/4	120	9 5/16	236	9 11/16	246	22.5	10.2	4 9/16	116	5/16	8	5/8	16	8	204	6 x 5/16	6 x M8	4.80	14.4		20.30	61.00	
60.3STP	4 3/4	120	9 5/16	236	10	253	25.8	11.7	,	116	5/16	8	5/8	16	8	204	6 x 5/16	6 x M8			14.40	9.20	20.30	61.00
70.2STP	5 1/8	130	9 7/16	240	10 1/16	256	24.9	11.3	4 1/2	115	3/8	10	5/8	16	8 1/8	205	6 x 5/16	6 x M8	5.70	18.50		22.20	72.00	
70.3STP	5 1/8	130	9 7/16	240	10 3/8	264	28.3	12.8	4 1/2	115	3/8	10	5/8	16	8 1/8	205	6 x 5/16	6 x M8			18.50	9.00	22.20	72.00
80.2STP	6 7/8		11 5/16	287	12 9/16	320	46.8		6 7/16	164	3/8		11/16		9 3/16			8 x M10				28.85		
80.3STP	6 7/8	175	11 5/16	287	12 7/8	327	50.1	22.7	6 7/16	164	3/8	10	11/16	18	9 3/16	233	8 x 3/8	8 x M10	2.76	9.94	32.12	8.01	28.85	93.24
Quattro																								
40STQP	3 1/8**	80**	7 1/8	180	6 7/8	175	10.2	4.6	3 1/4**	82**	5/16	8	1/2	12	4 7/8	123	5 x 1/4*	5 x M6	2.13	6.28		13.50	39.90	
46STQP	3 15/16‡	100‡	8 1/2	218	7 15/16	202	13.7	6.2	3 9/16‡	90‡	5/16	8	9/16	14	5 7/8	150	5 x 5/16	5 x M8	2.30	9.17		11.70	46.50	

^{**}Refers to upper drum. Lower drum \emptyset = 154 mm (6 1/16"); line entry height = 24 mm (15/16").

Electric and Hydraulic Performa Winches

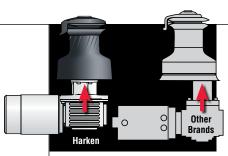

Electric and hydraulic Performa winches let you trim any size sail with the push of a button.

Specify power type, voltage, and motor configuration when ordering. See part number explanation.

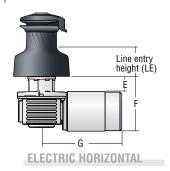
About Performa winches: see feature pages at beginning of this section.

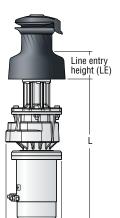
Part Numbers

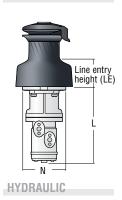
Specify power type, voltage, and motor configuration when ordering


Available in electric only. Additional letter code for left-mount option only; standard mounting part number ends with motor configuration.

LM = Left-mount


Dimensions


	<u> </u>											Wo	ight
Part	Racing disconnect	Е		F		G		L			ı		ıyııı motor
No.	rod*	in	mm	in	mm	in	mm	in	mm	in	mm	lb	kg
Electric													
40.2STEPH	B40PDR	1 3/4	43	6 1/8	155	8 7/8	227					29.7	13.5
46.2STEPH	B46PDR	1 3/4	43	6 1/8	155	8 7/8	227					32.8	14.9
46.2STEPV	B46PDR							15 3/8	391	6 1/8	157	36.9	16.7
50.2STEPH	B50PDR	2 3/4	69	7 1/8	181	9 5/8	244					37.1	16.8
50.2STEPV	B50PDR							15 3/8	391	6 1/8	157	38.6	17.5
60.2STEPH	B60PDR	2 3/4	69	7 1/8	181	9 5/8	244					46.4	21
60.2STEPV	B60PDR							15 3/8	391	6 1/8	157	47.9	21.7
60.3STEPH	B60.3PDR	2 3/4	69	7 1/8	181	9 5/8	244					49.7	22.5
60.3STEPV	B60.3PDR					-		15 3/8	391	6 1/8	157	51.2	23.2
70.2STEPH	B70PDR	2 3/4	69	7 1/8	181	9 5/8	244					48.8	22.1
70.2STEPV	B70PDR							15 3/8	391	6 1/8	157	50.3	22.8
70.3STEPH	B70.3PDR	2 3/4	69	7 1/8	181	9 5/8	244					52.1	23.6
70.3STEPV	B70.3PDR							15 3/8	391	6 1/8	157	53.6	24.3
80.2STEPH	B80PDR	3 3/16	81	8 11/16	221	10 11/16	272					70.6	32
80.2STEPV	B80PDR							16 13/16	427	6 3/4	172	72.2	32.7
80.3STEPH	B80.3PDR	3 3/16	81	8 11/16	221	10 11/16	272					74	33.5
80.3STEPV	B80.3PDR							16 13/16	427	6 3/4	172	75.5	34.2
Hydraulic													
46.2STHP	B46PDR							9 1/4	234	5 1/8	130	28	12.7
50.2STHP	B50PDR							9 1/4	234	5 1/8	130	29.8	13.5
60.2STHP	B60PDR							9 1/4	234	5 1/8	130	39.1	17.7
60.3STHP	B60.3PDR							9 1/4	234	5 1/8	130	42.4	19.2
70.2STHP	B70PDR							9 1/4	234	5 1/8	130	41.5	18.8
70.3STHP	B70.3PDR							9 1/4	234	5 1/8	130	44.8	20.3
80.2STHP	B80PDR							9 7/8	250	5 1/8	130	80.9	36.7
80.3STHP	B80.3PDR							9 7/8	250	5 1/8	130	84.2	38.2


^{*}When racing, insert a racing disconnect rod to operate the winch manually. Performa disconnect rods are also available for Radial winches.

Harken electric and hydraulic motors attach to the central drive shaft and drive through the winch gears for a 2-speed mechanical advantage—the low-power first gear for fast trimming, the higher-power second gear for fine-tuning loaded sheets. This results in reduced battery drain and a more efficient motor on the electric version. The energy-efficient hydraulic version is also smaller, reducing weight and cost.

ELECTRIC VERTICAL

Electric Components

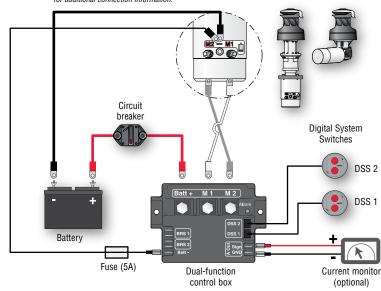
Battery voltage and winch size determine which components you should use. For winches size B980 and above, contact Harken for appropriate components. All components sold separately.

Each electric winch requires one control box, one circuit breaker, and two analog switches or one Digital System Switch. All new electric Radial, Performa, and captive winches are supplied with the appropriate dual-function control box. For replacement or retrofit control boxes, contact Harken.

Hydraulic winches require two analog switches or one Digital System Switch.

Analog Switches

Harken offers simple, waterproof switches for electric and hydraulic winches. Order two switches for each winch.

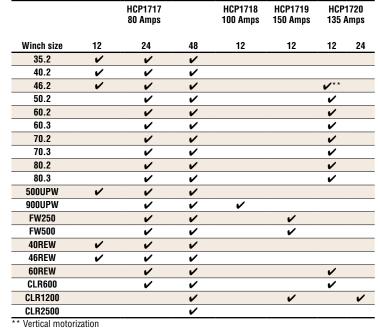

High-Amperage Circuit Breakers

Harken offers four panel-mount, high-amperage circuit breakers. They are compact, waterproof, weather-resistant, and ignition-protected. Circuit breakers are available for 12-, 24-, or 48-volt DC systems.

Dual-Function Control Boxes

This labor-saving control box with built-in load controller combines two products into one, reducing wiring and connection points by almost half, greatly simplifying installation of Harken electric winches. Supports Digital System Switch or analog switches. A mix of switches is not supported.

System wiring may be different depending on winch size and installation. Please refer to the user manual for additional connection information.



CIRCUIT BREAKERS

DUAL-FUNCTION CONTROL BOXES

Analog Switches

Part		Le	ngth	Wi	dth	Hei	ght	We	ight
No.	Description	in	mm	in	mm	in	mm	0Z	g
BRS102/S	Remote switch w/guard	2 11/16	68	2 11/16	68	13/16	21	10.4	295
BRS102/P	Remote switch w/guard	2 11/16	68	2 11/16	68	13/16	21	4.8	135
BRS104/P	Remote switch w/guard	3 3/8	85	3	76	3/4	19	3.4	95

Digital System Switches

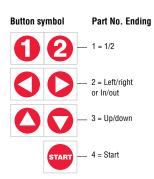
Harken Digital System Switches in dual and single-function models set the standard for the reliable operation of electrically-powered yacht systems.

To accomplish this, safeguards have been built into the systems.

- The waterproof control button translates electrical information into a binary code that
 won't allow the system to start without the signals being verified by the decoder. An
 analog system sends continuous electrical information directly to the powered device
 which means damage to the wiring or water ingress could result in unsafe activation.
- Watertight seals are never exposed, eliminating potential damage from sun and prolonged use.
- Underneath each control button, two command switches must work in unison before a signal is sent.

Harken Digital System Switches resist impact, wear, and abrasion. A unique adhesive mounting system is available where drilling is undesirable. The product is offered in black polyamide resin or stainless steel. Integrated lighting provides low-light visibility.

Dual-function


Two-function control buttons housed in a single space-saving system—1st/2nd gear for winches, up/down for anchors, in/out for furling.

Single-function

Single control button—Pairs with the Harken UniPower single-speed winch used by cruisers.

Active buttons: 1st/2nd gear for winches, up/ down for anchors, in/out for furling.

SINGLE-FUNCTION

Part		Ø	Í	Hei	ght	We	ight
No.	Description	in	mm	in	mm	0Z	g
Dual-function							
DSDBK1	Dual function digital switch/1-2	3 1/8	79.6	1	25.5	4.23	120
DSDSS1	Dual function digital switch/1-2	3 3/16	80.5	1 1/32	26	4.59	130
DSDBK2	Dual function digital switch/left-right or in-out	3 1/8	79.6	1	25.5	4.23	120
DSDSS2	Dual function digital switch/left-right or in-out	3 3/16	80.5	1 1/32	26	4.59	130
DSDBK3	Dual function digital switch/up-down	3 1/8	79.6	1	25.5	4.23	120
DSDSS3	Dual function digital switch/up-down	3 3/16	80.5	1 1/32	26	4.59	130
Single-function							
DSSBK4	Single function digital switch/black	3 1/8	79.6	1	25.5	4.23	120
DSSSS4	Single function digital switch/stainless steel	3 3/16	80.5	1 1/32	26	4.59	130

CLR™ Mooring Winch

The Harken® CLR™ mooring winch is a flush-stowing, deck-mounted powered winch for both sail and power yachts featuring geometry and mechanical characteristics never before seen.

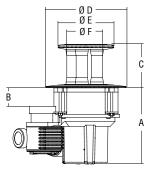
No other retracting, flush-mounted winch has offered the power-for-size ratio offered by the CLR. It stows completely belowdeck and occupies less horizontal and vertical space than required by the competition. The CLR is also lighter than the competition while delivering comparable mechanical advantage.

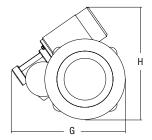
This compact form makes it possible for yachts to mount two CLR winches at the stern quarters and one in the bow. Together, three CLRs can reduce the need for engine and thruster power while helping crews moor stern-to-dock.

The CLR employs unprecedented winch drum geometry. Five aluminum columns rotate together around a center axis. Working together, they create a very light drum that provides substantially more line-holding power and low-speed torque than would be available using a traditional drum.

The CLR offers internal LED lights at the bottom of each column for use in lowlight mooring situations. Deck plates are available in aluminum, chrome, or wood grain finishes.

Harken produces six sizes of the CLR available in 12 or 24 V or 400 VAC electric or hydraulic power. With maximum holding load ranges from 600 to 12000 kg,




LED lights are integrated at the bottom of each column for lowlight mooring situations.

CLR™ Mooring Winch

		Liı	ne Ø		Max	c line	Maxi	mum	Maxi	mum				Deck i	olate material	
Winch	M	lin	Ma	ax	spe	ed*	holdin	g load	pulling	j load	Boat le	ength**	Aluminum	Chrome .	Stainless steel	Custom
size	in	mm	in	mm	ft/min	m/min	lb	kg	lb	kg	ft	m	(A)	(C)	(SS)	(TC)
Electric											<u>'</u>					
CLR600E	1/2	12	11/16	18	59	18	1320	600	660	300	45 - 60	13.7 - 18.3	~	~	_	~
CLR1200E	1/2	12	11/16	18	49.2	15	2640	1200	1320	600	60 - 90	18.3 - 27.4	~	~	_	~
CLR2500E24V	1/2	12	15/16	24	55.8	17	5500	2500	2750	1250	90 - 120	27.4 - 36.6	V	_	V	~
LR2500E400V	1/2	12	15/16	24	65.6	20	5500	2500	2750	1250	90 - 120	27.4 - 36.6	~	_	~	~
CLR4000E24V	5/8	16	1 3/16	30	75.5	23	8800	4000	4400	2000	120 - 190	36.6 - 57.9	~	_	~	~
LR4000E400V	5/8	16	1 3/16	30	59	18	8800	4000	4400	2000	120 - 190	36.6 - 57.9	~	_	V	V
CLR8000E	7/8	22	1 3/8	35	72.2	22	17600	8000	8800	4000	190 - 250	57.9 - 76.2	~	_	~	~
CLR12000E	7/8	22	1 9/16	40	7.2	22	26400	12000	13200	6000	250 - 300	76.2 - 91.4	~	_	V	V
Hydraulic																
CLR600H	1/2	12	11/16	18	59	18	1320	600	660	300	45 - 60	13.7 - 18.3	~	~	_	/
CLR1200H	1/2	12	11/16	18	49.2	15	2640	1200	1320	600	60 - 90	18.3 - 27.4	~	~	_	V
CLR2500H	1/2	12	15/16	24	55.8	17	5500	2500	2750	1250	90 - 120	27.4 - 36.6	V	_	V	· ·
CLR4000H	5/8	16	1 3/16	30	72.2	22	8800	4000	4400	2000	120 - 190	36.6 - 57.9	V	_	V	V
CLR8000H	7/8	22	1 3/8	35	72.2	22	17600	8000	8800	4000	190 - 250	57.9 - 76.2	·		<i>'</i>	~
CLR12000H	7/8	22	1 9/16	40	7.2	22	26400	12000	13200	6000	250 - 300	76.2 - 91.4	~	_	V	V

Dimensions

					В													
Winch	A		M	in	Ma	X	C		D		E		F		G		Н	l
size	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm	in	mm
Electric																		
CLR600E	9 13/16	250	5/8	15	2 15/16	75	4 5/16	110	7 7/8	200	5 11/16	144	3 11/16	94	12 17/32	318	14	355
CLR1200E	9 5/16	237	5/8	15	2 5/32	55	5 5/16	135	9 27/32	250	6 27/32	174	4 11/16	119	13 5/8	346	13 25/32	350
CLR2500E24V	9 13/16	250	5/8	15	2 5/32	55	5 1/8	130	12 3/16	310	8 7/32	209	5 1/2	140	15 15/16	405	16 9/16	420
CLR2500E400V	12 1/16	307	5/8	15	2 5/32	55	5 1/8	130	12 3/16	310	8 7/32	209	5 1/2	140	22 19/32	574	20 9/32	515
CLR4000E24V	19 3/8	492	25/32	20	4 23/32	120	9 5/8	244	14 3/8	365	9 5/8	244	7 9/32	185	22 1/16	560	23 13/16	605
CLR4000E400V	25 1/32	636	25/32	20	4 23/32	120	9 5/8	244	14 3/8	365	9 5/8	244	7 9/32	185	19 1/32	483	30 3/8	771
CLR8000E	26 1/2	673	31/32	25	4 3/16	106	9 3/4	247	16 3/4	425	12 3/16	309	9 27/32	250	24 13/32	620	43 13/16	1113
CLR12000E	29	736	31/32	25	4 3/16	106	12 3/16	310	16 3/4	425	12 3/16	309	9 27/32	250	24 13/32	620	43 13/16	1113
Hydraulic																		
CLR600H	9 13/16	250	5/8	15	2 15/16	75	4 5/16	110	7 7/8	200	5 11/16	144	3 11/16	94	12 17/32	318	14	355
CLR1200H	9 5/16	237	5/8	15	2 5/32	55	5 5/16	135	9 27/32	250	6 27/32	174	4 11/16	119	13 5/8	346	13 25/32	350
CLR2500H	9 13/16	250	5/8	15	2 5/32	55	5 1/8	130	12 3/16	310	8 7/32	209	5 1/2	140	15 15/16	405	16 9/16	420
CLR4000H	19 3/8	492	25/32	20	4 23/32	120	9 5/8	244	14 3/8	365	9 5/8	244	7 9/32	185	22 1/16	560	19	482
CLR8000H	26 1/2	673	31/32	25	4 3/16	106	9 3/4	247	16 3/4	425	12 3/16	309	9 27/32	250	24 13/32	620	30 7/16	773
CLR12000H	26 1/2	673	31/32	25	4 3/16	106	12 3/16	310	16 3/4	425	12 3/16	309	9 27/32	250	24 13/32	620	30 7/16	773

Aluminum Powered Winches

Harken aluminum winches are hardcoat-anodized to resist corrosion. Anodization colors can be customized to match your yacht's aesthetics. Winches are also available with carbon fiber tops and skirts.

Harken megayacht winches are kings of power and speed that will set you on the path to fast, efficient sail handling. Contact a Harken project manager to configure optimal gear ratios, electric or hydraulic motor selection, and power settings for your application, ensuring your winches perform at full potential—from superfast line speeds needed for iibes, to hoisting a wet headsail to the top of the mast in fast gear.

Product not stocked. Contact Harken to request quote and lead time.

Stainless Steel Powered Winches

Harken stainless steel winches come standard with durable, lustrous classic stainless finish. For an even more stunning look, they can be polished to a mirror-finish.

As is true with all of the largest Harken winches, our stainless winches provide both power, speed and energy efficiency required for fast, reliable sail handling. Harken project managers are available to help configure optimal gear ratios, motor selection, and power settings, for any application.

B980.2ST B980.3ST

B1120HL-ST

B1235ST B1335ST

Bronze Powered Winches

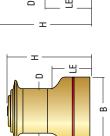
Bronze finish winches enhance your yacht's classic look, while providing the low-friction pulling power available from Harken's gearing systems. Marine-grade, polished-bronze maximizes durability and corrosion resistance.

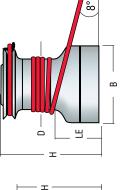
All Harken megayacht winches offer a comprehensive range of power and speed that will set you up for fast, efficient sail handling. Your Harken project manager is available to work with you on gear ratios, motor selection, and power settings, ensuring your winches perform at full potential—from superfast line speeds when jibing, to the power to finish a tack in the biggest breeze.

Winch tops can be engraved with your yacht's name.

S/Y Doña Francisca, Designer: Javier Soto Acebal, Builder: Astillero Buquebus

Aluminum, Stainless Steel, All-Chrome, & Bronze Winches


Part			Materials	rials		
No.	A/GGG ASA	ASA	၁၁၁	SOO 000	SSS	888
Plain-Top						
B980.2/B980.3	ı	1	ı	ı	ı	7
B1111.3PT	1	I	1	ı	Ι	7
Self-Tailing						
B980.2ST/B980.3ST	7	7	I	7	7	7
B990.2ST/B990.3ST	7	7	I	ı	7	I
B1000.2ST/B1000.3ST	7	7	7	ı	7	7
B1111.3ST	7	7	Ι	I	7	1
B1120.3-HL ST	7	7	ı	ı	7	7
B1130.3ST	7	ı	I	ı	7	I
B1235.3ST	7	7	1	ı	>	1
B1335.3ST	7	ı	ı	ı	ı	1
B1145.3ST	7	ı	ı	ı	7	1
B1150.3ST	ı	7	I	ı	7	7


999 Letter code Ordering Information: Specify material by adding letter code to part number. See chart for availability.

B1111-HL and B1235 drums are always supplied with a stainless steel ring.

		0						We	eight				Line Ø	0												
Part	Drum (D)		Base (B)		Height (H)	A/GGG		CCA/BBA/CCS/ CCC/BBB	S/ ASA		SSS	Ξ	Min	Max		Line entry height (LE)	ĒŢ	Fastener circle	e e	Fasteners	iers	Ĝ	Gear ratio		Power ratio	atio
No.	.⊑	mm	in	шш	in mm	n lb kg	kg lb	ķ	<u>a</u>	kg lb) kg	.⊑	E	. <u>=</u>	m m		шш	.⊑	ш	ء.	шш	_	8		2	က
Plain-Top																										
B980.2	8/2 9	175 10 7/16 265	7/16 2		11 3/4 298	~	94.8	8 43							51,	5 13/16 1	148	8 7/8	225	6 x 3/8 FH	6 x 10 FH	7.3	27.8	21.2	.2 80.7	
B980.3	8/2 9	175 10 7/16 265	7/16 2	65 11	11 3/4 298	3	94.8	8 43							51,	5 13/16 1	148	8 7/8	225	6 x 3/8 FH	6 x 10 FH	2.75	7.3 27	27.8 8	21.2	2 80.7
B1111.3PT	F	280 14 3	14 3/16 36	360 9 2	95/16 236	(3.5	3 5/32	80 10	10 15/16	278	8 x 3/8 SH	8 x 10 SH	-	9.7 4	44.7 7.	7.8 17.6	81.1
Self-Tailing																										
B980.2ST	8/2 9	175 10;	7/16 2	65 11 1	175 10 7/16 265 11 13/16 300		97.6	6 42		88.2	.2 40	3/8	e	13/16	20 51	5 13/16 1	148	8 7/8	225	6 x 3/8 FH	6 x 10 FH	7.3	27.8	7	21.2 80.7	
B980.3ST	8/2 9	175 107	7/16 2	65 11 1	10 7/16 265 11 13/16 300	(92.6	6 42		88.2	.2 40	3/8	10	13/16	20 51	5 13/16 1	148	8 1/8	225	6 x 3/8 FH	6 x 10 FH	2.75	7.3 27	27.8 8	21.2	2 80.7
B990.2ST*	∞	203 1	11 28	. 6 082	91/2 241	241 43.7 19.8	9.8		61.7 2	28 68.3	.3	2/16	Ξ	3/4	19 32	3 27/32	98	93/16	233	7 × 5/16 FH	7 x 8 FH	9.6	40.1	24.8	.8 100	
B990.3ST*	œ	203 1	11 28	. 6 082	91/2 241	44.8	20.3		61.7 2	28 68.3	.3 31	2/16	Ξ	3/4	19 32	3 27/32	98	93/16	233	8 × 5/16 FH	8 x 8 FH	-	9.9 4(40.1 2.5	5 24.8	3 100
B1000.2ST	8/2 9	175 11 5	5/16 2	87 13,	175 11 5/16 287 13 3/16 335	5 49.6 22.5	2.5					3/8	유	3/4	18 67	6 7/16 1	164 9	93/16	233 8	8 x 3/8 SH/HH 8 x 10 SH/HH	8 x 10 SH/HH	9.4	28.1	32.1	.1 93	
B1000.3ST	8/2 9	175 11 5/16	5/16 2	287 13	13 3/16 335	5 52.3 23.7	3.7					3/8	10	3/4	18 67	67/16 1	164 9	93/16	233 8	8 x 3/8 SH/HH 8 x 10 SH/HH	8 x 10 SH/HH	2.23	9.4 28	28.1 6.5	5 32.1	93
B1111.3ST*	=	280 14	3/16 3	96 09	280 143/16 360 95/16 236 61.7		28		88.6 40	0.2 117	88.6 40.2 117.9 53.5 7/16	7/16	Ξ	3/4	19 31	3 11/16	94 1	10 5/8	271	8 × 3/8 SH	8 x 10 SH	-	9.7 4	44.7 7.8	8 17.6	81.1
B1111.3ST-HL	Ξ	280 131	3/16 3	51 10	280 1313/16 351 10 3/8 263	3			92.6 4	42 125.7	5.7 57	7/16	Ξ	3/4	19 39	3 9/16	91 1	10 5/8	271	8 × 3/8 SH	8 x 10 SH	-	9.7 4	44.7 7.8	8 17.6	81.1
B1120.3-HL ST	11 3/4	298 161	5/32 4	18 15 1	298 16 15/32 418 15 11/16 398	3	227	7 103	170.2	77.2 203	13 92.1	9/16	14	-	25 613	6 13/32 1	163 1	12 3/4	324		9 x 12 SH	5.6	10.8 5	55.2 4.4	4 18.2	93.4
B1125.3ST*	11 13/16 300	300		91	913/16 249	6						7/16	Ξ	3/4	19 4	4 1/8 1	105 11	11 15/16	303	9 x 1/2 SH	9 x 12 SH	4	13.5 54	54.7 6.8	8 22.8	3 92.6
B1130.3ST*	12 3/4	324 16 3/32 409 12 1/8	3/32 4	09 12	1/8 308	94.8	43					2/8	16	-	25 41	4 17/32 1	115 1	12 3/4	324	9 x 1/2 SH	9 x 12 SH	-	10.8 5	55.2 1.6	6 16.9	9.98 6
B1235.3ST	12 3/4	324 16 3/32 409 12 1/8	3/32 4	09 12	1/8 308	308 101.4 4	46			170	170.6 77.4	2/8	16	-	25 41	4 11/16 1	119 1	12 3/4	324	9 x 1/2 SH	9 x 12 SH	-	9.4	48 1.6	6 16.9	9.98 6
B1335.3ST	12 3/4	324 16	16 5/16 4	14 13 1	414 13 15/32 342	C:				233	233.7 106	2/8	16	-	25 61	6 1/16 1	153 1	14 9/16	370		11 x 12 SH	2.3	8	38.2 3.7	7 12.5	59.9
B1145.3ST	14 1/4	362 21 3	3/16 5.	38 16	1/2 415	21 3/16 538 16 1/2 419 192.9 87.5	7.5			321	321.9 146	2/8	16	8//	22 83	8 3/16 2	208 1	17 3/4	450	14 x 1/2 SH	14 x 12 SH	5.9	11.9 50	53.6 4.1	1 16.6	3 75.6
B1150.3ST#	16 5/32	410 253	25 3/16 64	640 19	19 3/4 502	<u> </u>	449.7	.7 204	1 374.8 170 414.5 188	70 414	1.5 188	9/16	4	-	25 8	8 7/8	225	22 1/16	260	12 x 1/2 SH	12 x 12 SH	3.4	15.3 64	64.9 4.2	2 19	80.4

Product not stocked. Contact Harken to request quote and lead time. *Reduced first gear. # Weight based on top cleat.

Carbon Fiber Winches

Carbon winches are standard in many racing classes and are the choice of performanceoriented fast cruisers.

Winches feature carbon skirts and tops, aluminum drums, and strong composite jaws with one-piece sculpted line guide and peeler. PEEK roller bearings are low-maintenance, reliable, and efficient. They ride in large-diameter cages, allowing more bearings to carry the load. Stainless steel drive gears are strong and durable. The AC versions of the 65.3ST and 65.2ST winches feature titanium gears for extremely high strength-to-weight ratios and exceptional resistance to corrosion.

Carbon winches come with up to three speeds and can be driven by handle, pedestal, or by electric or hydraulic motors. Harken's 50.3STR is the smallest three-speed direct drive self-tailing winch in the industry.

Harken designed the 600.3STR wide-body, self-tailing winch for use on Fast 40+ class boats for use as primary and mainsheet winches. The 600.3STR, which is made from aluminum, is a direct drive three-speed winch that can be driven by handle or pedestal.

Options include self-tailing arms, top cleats, free-spinning or ratcheting base sheave additions, and left-handed rotation.

If class rules dictate, winches are also available in all-aluminum with stainless steel gears.

DNA F4 Catamaran, 14.2 m (46.7') © DNA Performance Sailing

B65.2STAC

Carbon Fiber Winches

These powerful carbon winches are aboard large megayachts, performance cruisers, and racing monohulls and multihulls over 18 m (60').

Winches feature carbon skirts and tops, aluminum drums, and strong composite jaws with one-piece sculpted line guide and peeler. PEEK roller bearings are low-maintenance, reliable, and efficient. They ride in large-diameter cages, allowing more bearings to carry the load. Stainless steel drive gears are strong and durable. The AC versions of the 1111PT and 990.3ST winches feature titanium gears for extremely high strength-to-weight ratios and exceptional resistance to corrosion.

Drives are pedestal, electric, or hydraulic. Wide-diameter drums provide extra surface area to hold line securely under high loads. Fewer wraps speed line retrieval when sheeting.

Other options include self-tailing, top cleats, four speeds, free-spinning or ratcheting base sheave additions, and left-handed rotation.

If class rules dictate, winches are also available in all-aluminum with stainless steel gears.

8.

5T

5.5T

B1111.3STR

B1111.3PTAC

B1145.3TCR

13T

B1145.3STR

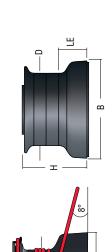
13T

11T

HARKEN

B1125.3STR

Carbon Fiber Winches



Base riser required to mount B50, B55, and B65 winches above deck. Specify above deck or flush deck version when ordering.

Use base sheaves for cross-sheeting and lazy sheets. Availability varies by winch size.

- 出 -

Part Drum (D) No. in m B50.2STR‡ 4 9/16 17	()										•												
	(E)	Base (B)	(B)	Height (H)	Œ	Weight	=	Min		Max	É	height (LÉ)	_	circle	Fast	Fasteners		Gear ratio	tio		Pov	Power ratio	
	E	.⊑	ш	.⊑	E	a	kg	_ 	mm	in mm		in mm	Ξ.	mm	<u>.</u>	шш	-	2	3 4	_	2	က	4
	116	7 1/4	184	9/2 9	168	11.7		3/16	5 3	3/8 10		2 9/16 65	6 15/32	2 164	4 6 × 5/16 FH	6 x 8 FH	2.7:1	11.4:1	:	11.7:1	7:1 50.7:1	_	
B50.3STR 4 9/16	116	7 1/4	184	8/2 9	175	13.7	6.2	3/16	5 3	3/8 10	2	9/16 65	6 15/32	2 164	4 6 x 5/16 FH	6 x 8 FH	₽	2.7:1 11	11.4:1	4.4:1	:1 11.7:1	1 49.8:1	
B500.2STR 4 9/16	116	7 1/4	184	9/2 9	168	Ξ	2	3/16	5	3/8 10	2	9/16 65	6 15/32	2 164	4 6 x 5/16 FH	6 x 8 FH	2.7:1	11.4:1		11.7:1	7:1 50.7:1	_	
B500.3TCR 5 1/8	130	7 1/4	184	8/2 9	175	13.7	6.2				2 5/	5/32 55	6 15/32	2 164	4 6×5/16FH	6 x 8 FH	1:1	2.7:1 11	11.4:1	3.9:1	:1 10.4:1	1 44.5:1	
B65.2STR** 5 7/8	149	10	255	7 13/16	199	20.9	9.5	5/16	8 5	5/8 16	5 31/4	1/4 83	8 29/32	2 226	3 6 x 5/16 FH	6 x 8 FH	4.6:1	19.2:1		15.7:1	7:1 65.5:1	-	
B65.2STAC 5 7/8	149	10	255	7 13/16	199			5/16	8	5/8 16	5 3 11/32	1/32 85	8 29/32	2 226	5 6×5/16FH	6 x 8 FH	4.6:1	19.2:1		15.7:1	7:1 65.5:1	-	
B65.3STR** 5 7/8	149	10	255	8 29/32	226	26 1	11.8	2/16	8 5	5/8 16		3 1/4 83	8 29/32	2 226	3 6 x 5/16 FH	6 x 8 FH	1:1	4.6:1 19	19.2:1	3.4:1	:1 15.7:1	1 65.5:1	
B65.3TCR 5 7/8	149	10	255	8 29/32	226	25.4 1	11.5				31	3 1/4 83	8 29/32	2 226	3 6 x 5/16 FH	6 x 8 FH	1:1	4.6:1 19	19.2:1	3.4:1	:1 15.7:1	1 65.5:1	
600.3STR 5 1/8	130	7 1/4	184	8/2 9	175	15.0	9.9	3/16	5 3	3/8 10	2	9/16 65	6 15/32	2 164	1 6 x 5/16 FH	6 x 8 FH	1:1	2.66:1 14	14.60:1	3.9:1		10.42:157.05:1	
B650.3STR 5 7/8	149	6	228	7 7/32	183	21.1	9.6	2/16	8 5	5/8 16		3 1/4 83	9 27/32	2 250	5 x 5/16 FH	5 x 8 FH	1:1	4.6:1 19	19.2:1	3.4:1		15.7:1 65.5:1	
B650.3TCR 5 7/8	149	6	228	7 7/32	183	20	9.1				3.1	3 1/4 83	9 27/32	2 250	5 x 5/16 FH	5 x 8 FH	1:1	4.6:1 19	19.2:1	3.4:1	:1 15.7:1	1 65.5:1	
B990.3STR 8	203	Ξ	280	9 1/2	241	44.8 20	3.3	7/16 1	11 3	3/4 19	3 27/32	7/32 98	93/16	233	8 × 5/16 FH	8 x 8 FH	₽	9.9:1 4	40:1	2.5:1	:1 24.8:1	1 100:1	
B990.3STAC 8	203	13 1/16	332	91/16	240			7/16 1	11 3	3/4 19	9 3 27/32	7/32 98	12	305	5 8 x 5/16 FH	8 x 8 FH	1:1	9.9:1 4	40:1	2.5:1	:1 24.8:1	1 100:1	
B990.3TCR 8	203	1	280	9 1/16	240	41.5 1	8.8				3 27	27/32 98	9 3/16	3 233	3 8 x 5/16 FH	8 x 8 FH	1:1	9.9:1	32:1	2.5:1	:1 24.8:1	1 80:1	
B1111.3STR* 11 1/32	2 280	14 3/16	360	9 2/16	236	54 2	24.5	. 91/2	11 3	3/4 19	9 311	3 11/16 94	10 21/32	32 271	1 8 x 3/8 SH	8 x 10 SH	1:1	9.7:1 44	44.7:1	1.8:1	:1 17.6:1	1 81:1	
B1111.3TCR 11 1/32	2 280	14 3/16	360	8 5/32	207	41 1	9.81				3 11	3 11/16 94	10 11/16	6 271	HS 8/8 X 8	8 x 10 SH	1:1	9.7:1 44	44.7:1	1.8:1	:1 17.6:1	1 81:1	
B1111.3PTAC* 11 1/32	2 280	14 3/16	360	8 19/32	218						3 11	3 11/16 94	10 21/32	271	1 8 × 3/8 SH	8 x 10 SH	1:1	3:1 9	9.7:1 44.7:1	7:1 1.8:1	:1 5.4:1	17.6:1	81:1
B1111.3STAC 11 1/32	2 280	14 3/16	360	9 9/32	236			. 91//	11 3	3/4 19		3 11/16 94	10 21/32	271	1 8 x 3/8 SH	8 x 10 SH	: :	3:1 9	9.7:1 44.7:1	7:1 1.8:1	:1 5.4:1	17.6:1	81:1
B1130.3STR 12 3/4	324	16 3/32	409	12 1/8	308	98	39	. 8/9	. 91	1 25	5 4 17/32	7/32 115	5 12 3/4	324	1 9×1/2 SH	9 x 12 SH	1:1	10.8:1 55	55.2:1	1.6:1	:1 16.9:1	1 86.6:1	
B1130.3TCR 12 3/4	324	16 3/32	409	11 17/32	293	98	39				4 17	4 17/32 115	5 12 3/4	324	1 9 x 1/2 SH	9 x 12 SH	1:1	10.8:1 55	55.2:1	1.6:1	:1 16.9:1	1 86.6:1	
B1135.3STR 12 3/4	324	16 3/32	409	12 1/8	308	97.6	42	. 8/9	16	1 25		4 17/32 115	5 12 3/4	324	1 9 x 1/2 SH	9 x 12 SH	1:1	10.8:1 55	55.2:1	1.6:1	:1 16.9:1	1 86.6:1	
B1135.3TCR 12 3/4	324	16 3/32	409	11 17/32	293	11	35				4 17/32	7/32 115	5 12 3/4	324	1 9 x 1/2 SH	9 x 12 SH	Ξ	10.8:1 55	55.2:1	1.6:1	:1 16.9:1	1 86.6:1	
B1235.3STR 12 3/4	324	16 3/32	409	12 1/8	308	101.4	46	2/8	. 91	1 25		411/16 119	9 12 3/4	324	1 9×1/2 SH	9 x 12 SH	1:1	9.4:1 4	48.1	1.6:1	:1 14.7:1	1 74.3:1	
B1335.3STR 12 3/4	324	16 5/16	414	13 7/16	342			2/8	. 91	1 25		6 153	3 14 9/16	9 370	11 x 1/2 SH	11 x 12 SH	2.3:1	8:1 38	38.2:1	3.7:1	:1 12.5:1	1 59.9:1	
B1140.3STR 14 3/16	3 360	22 1/8	295	18 3/16	462	249.2	113	2/8	. 91	1 25	5 811/32	1/32 212	2 18 1/8	460	8 × 1/2 SH	8 x 12 SH	2.9:1	11.6:1 42	42.6:1	4:1	1 16.4:1	1 60.1:1	
B1145.3STR 14 1/4	362	21 3/16	538	16 1/2	419	192.9 8	37.5	5/8 1	16 7,	7/8 22	2 8 3/16	/16 208	3 17 3/4	450	14 x 1/2 SH	14 x 12 SH	2.9:1	11.9:1 53	53.6:1	4.1:1	:1 16.6:1	1 75.6:1	
B1145.3TCR 14 1/4	362	21 3/16	538	16 1/2	419	187.1 84	6.	3/4 1	19 1	1 1/4 32	2 8 3/16	/16 208	3 17 3/4	450		14 x 1/2 SH 14 x 12 SH	2.9:1	11.9:1 53	53.6:1	4.1:1	:1 16.6:1	1 75.6:1	
Product not stocked. Contact Harken to request quote and lead time.	act Harke	n to reque	st quote a	and lead ti		*4 Speed option available. Contact Harken.	ption a	vailable.	Contact	Harken.		‡Available in electric.		**Availa	**Available in electric or hydraulic.	· hydraulic.							

Air Winches

Harken Air winches feature interchangeable gearing sets that give crews the flexibility to create a perfect blend of speed and power for each day's weather and crew configuration. The winches, which feature a nearly empty middle to reduce weight, are designed to be used on SailGP foiling cats, IMOCA 60s, AC75s, TP52s and other large Grand Prix boats.

The Air winch's hollow middle is a first for sailing winches, as are the changeable gear kits. All Harken Air winch models feature interchangeable first-speed and second-speed options. The wide-diameter drums allow fewer wraps, faster trimming, and faster easing. Standard and counterrotating versions are available. The winches have a low-profile design. Available in five models: 250, 300, 550, 600 and 900.

The 250 and 300 models are designed for boats up to 17 m (56'). The 550 and 600 models are designed for boats up to 24.4 m (80') and the 900 is made for boats over 24.4 m (80'). The 250 and 550 feature a high-performance ceramic coated white drum. The 300 and 600 versions of the winch feature an anodized aluminum drum, and the 900 drum is made of carbon fiber and anodized aluminum.

The 250 and 550 are designed for new builds and are mounted in a unique way: the base of the winch is molded into the deck by the boatbuilder. The 300, 600 and 900 have a standard winch base that can be mounted on either new builds or retrofits.

The 250 and 550 Air winches are exclusively pedestal or handle driven. The rest of the models may be driven by pedestal, handle, or powered by electric or hydraulic motor.

Product not stocked. Contact Harken to request quote and lead time.

TP52 © Max Ranchi

Part		Gear ratio			Power ratio	
No.	1	2	3	1	2	3
Air winch 250	1.34:1	6.40:1	25.42.1	3.42:1	16.27:1	64.57:1
Air winch 300	1.34:1	6.40:1	25.42.1	3.42:1	16.27:1	64.57:1
Air winch 550	1.30:1	10.58:1	47.98:1	2.21:1	17.92:1	81.25:1
Air winch 600	1.30:1	10.58:1	47.98:1	2.21:1	17.92:1	81.25:1
Air winch 900	3.12:1	13.11:1	67.17:1	4.34:1	18.25:1	93.48:1

Part	Ø Part Drum Base Height							Line Ø Weight Min Max					Line entry height		Fastener circle		Fasteners
No.	in	mm	in	mm	in	mm	lb	kg	in	mm	in	mm	in	mm	in	mm	mm
Air winch 250	7 7/8	200	10 21/32	271	5 3/4	146	16.1	7.3	3/16	5	3/8	10	1 15/16	50			
Air winch 300	7 7/8	200	10 21/32	271	6	153	17.0	7.7	3/16	5	3/8	10	2 1/4	57	8 9/32	210	5 x M8
Air winch 550	11 13/16	300	14 15/16	380	6 7/8	174	27.3	12.4	1/4	6	1/2	12	2 7/16	61			
Air winch 600	11 13/16	300	14 15/16	380	7 3/16	182	32.6	14.8	1/4	6	1/2	12	2 3/4	69	12 13/16	325	7 x M10
Air winch 900	14 3/8	365	18 1/8	460	10 1/8	257	70.6	32	3/8	10	7/8	22	3 5/8	92	16 7/16	417	10 x M12

Racing Pedestals

Racing pedestals allow crew members to trim from powerful standing positions. Customized to meet each yacht's requirements, these pedestal systems can be linked together, allowing crew to work in tandem to produce more power for faster, more efficient maneuvers.

Belt-Drive Pedestals

Harken belt-drive pedestals are molded from carbon fiber and epoxy. Prepreg lamination and autoclave curing maximize stiffness and strength. Components are made of hardcoat-anodized aluminum and 17-4 PH stainless steel. Roller bearings, thermoplastic belt sprockets, and carbon-fiber reinforced drive belts result in the lowest possible weight.

Belowdeck belt-drive pedestals are also offered in above deck/mid-drive styles. These pedestals can be removed and winches converted to manual operation to make more room in the cockpit during a long-distance race or cruise.

MX Pedestals

Harken MX carbon pedestals drive winches on small Grand Prix racers like GP42s, GP52s and Open 60s. The patented overdrive system features two chains inside the pedestal, eliminating the weight of an external overdrive box. Two drive sprockets allow trimmers to select the gear ratio, switching between the 1:1 direct-drive and the fast 1:3 drive chain without reversing grinding directions.

Pedestal handles

Pedestal handles are offered in aluminum or carbon fiber and in single, double, or SpeedGrip styles.

A SpeedGrip pedestal handle is a great solution for solo sailors because it frees up a hand for another task. SpeedGrip winch handles can be special-ordered from Harken.

MX PEDESTAL

MX pedestal

The red shaft of the left button indicates the 1:3 overdrive is engaged. Every turn of the handle produces three turns of the winch.

MX drive sprockets

1:3 chain engaged

1:1 chain engaged

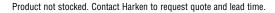
Twisted Twisted belt-drive

pedestals eliminate the weight of the 90° gear box when the arinder faces fore and aft.

Straight

A disconnect lever for an above-deck/mid-drive belt pedestal system is available.

Angled


An angled pedestal is customized to optimize the deck layout or tailored to the grinder for maximum comfort.

Air pedestal

The athwartship-mounted Air pedestal has a sculpted hole in the middle, with each leg shaped like a wing—the ultimate in drag reduction.

Wing pedestal

The Wing pedestal mounts fore and aft. It's extremely narrow aerodynamic shape dramatically reduces drag.

Racing Pedestal Drive Components

Gear Boxes

The bevel gearbox is the basic building block of belt-drive pedestal systems. The B606 gear box is designed for up to a six-man, three-pedestal input.

Gearbox housings are CNC-machined from a solid piece of aluminum, hardcoat-anodized for strength and durability. Gears, shafts, and rollers are 17-4 PH stainless steel and are lubricated in a sealed oil bath for minimal maintenance.

Drive Shafts

Harken offers two types of drive shafts. Extruded, splined, aluminum drive shafts may be cut to length. Carbon tubular drive shafts are available with bonded end fittings for U-Joints or spherical CV-Joints. Shaft choice is determined by load, cost, and weight considerations. Your Harken representative can provide details on the best drive shaft for your boat.

Disconnects

System disconnects can be activated with either levers and control lines for hand operation, or a two-position push button for foot activation. The Harken foot button has fewer than 10 components, compared to almost 100 in other buttons, minimizing the possibility of losing or breaking parts. Foot button tops come in red, black, or blue to distinguish functions above deck.

Support Shafts

To space and support a gearbox beneath a winch, Harken supplies tubes for the B404, B606, and B808 series gearboxes. Tubes are made to length from carbon fiber/epoxy with bonded aluminum ends.

808 gear box

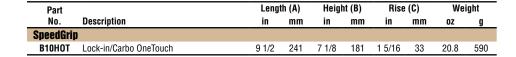
T-box bracket

The 404 gearbox is designed for the TP52 Class. It allows for the power of as many as four crew members using two pedestals to be applied to a single winch drum. The 404 is a small, light and highly efficient bevel box. The 808 gearbox is designed for boats with four or more pedestals on board. It allows for the power of as many as eight crew members. Both the 404 and 808 gearboxes are oilbath lubricated and have inspection windows.

Accessories: Carbo OneTouch® Locking Winch Handle

Lightweight and fast-acting, the Carbo OneTouch ball bearing locking winch handle makes grinding winches easy! Racers will maneuver faster and cruisers will have confidence in a reliable and easy-to-use winch handle.

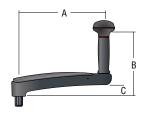
The Carbo OneTouch locks in and out of the winch using its patented locking mechanism and ergonomically-designed grab bar. It only takes one hand to set or release the handle—squeeze anywhere along the grab bar with your palm to unlock; release the bar for a secure lock.


Harken added SpeedGrip handle technology to the OneTouch for fast and efficient winching. Its independent swivel between the ball bearing knob and hand-grip allows fast trimming using the palm for low-loads, and powerful two-handed grinding when loads are high.

At just 590 g (20.8 oz), the Harken Carbo OneTouch is built to be strong but lightweight. The grab bar and main handle are made of the same tough material as our Carbo block line: high-strength, fiber-reinforced composite, UV-stabilized for excellent protection against long-term exposure to saltwater and sun. The handle and grab bar are cross-ribbed and braced for enhanced stiffness.

An aluminum grip rod mates seamlessly to a forged aluminum handle insert to manage bending stresses. The black hardcoat-anodized octagonal drive gear is also integrated into the molding process, resulting in an extremely strong, one-piece structure. Its locking pins are tough 316 marine-grade stainless steel.

OneTouch is a registered trademark of Donald J. Steiner.


Molded urethane knob for comfortable feel and better grip when palming the handle.

Handle features an independent swivel between the knob and handle to keep the wrist straight and arms in the best power position while grinding.

B₁₀H₀T

The patented locking mechanism features two stainless steel pins that automatically retract when the handle's full-length grab bar is squeezed, and extend when it is released for a solid, secure lock.

These robust low-friction ball bearing handles match a range of cranking needs for both racers and cruisers. Handles feature a ball bearing grip that efficiently transmits power into the winch. All handles fit international standard winch sockets.

Locking vs. Plain

Lock-in handles are easy to engage and release with a thumb switch. Racers prefer plain handles because they are faster to insert.

Handle Length

254 mm (10") is the most comfortable handle length for most sailors. Published power ratios are based on this length.

203 mm (8") handles grind faster because they swing through a smaller circle, but power is reduced by 20%. 203 mm (8") handles are ideal for smaller boats and light air where speed is more important than power.

SpeedGrip

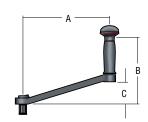
SpeedGrip handles are designed for the serious racer and are effective in both light and heavy air conditions. The unique grip permits low-load fast cranking using the palm, and powerful two-handed grinding when loads are high. The low-profile B8ASGLP is made for fast one-handed cranking where speed is the concern, not power.

Molded urethane knob for comfortable feel and better grip when palming the handle.

Handles feature an independent swivel between the knob and handle to keep the wrist straight and arms in the best power position while grinding.

The 254 mm (10") B10ADL

SG SG


B8BL B10BL

B8CL B10CL

B10ADL

SPEEDGRIP

Part		Lengi	th (A)	Heigh	t (B)	Rise	(C)	We	ight
No.	Description	in	mm	in	mm	in	mm	0Z	g
SpeedGrip									
B8ASGLP	Lock-in/low-profile/aluminum	8	203	4 13/16	122	1 1/4	32	14.1	400
B8ASG	Lock-in/aluminum	8	203	7 3/16	182	1 1/4	32	17.6	500
B8CSG	Lock-in/chrome	8	203	7 3/16	182	1 1/4	32	35.3	1000
B10ASG	Lock-in/aluminum	10	254	7 7/16	188	1 1/2	38	21.2	600
B10CSG	B10CSG Lock-in/chrome		254	7 7/16	188	1 1/2	38	47.6	1350
Standard									
B8AP	No-lock/aluminum	8	203	6 5/8	168	1 1/4	32	14.1	400
B8AL	Lock-in/aluminum	8	203	6 5/8	168	1 1/4	32	14.1	400
B8BL	Lock-in/bronze	8	203	6 5/8	168	1 1/4	32	31.7	900
B8CL	Lock-in/chrome	8	203	6 5/8	168	1 1/4	32	31.7	900
B10AP	No-lock/aluminum	10	254	7	178	1 1/2	38	17.6	500
B10AL	Lock-in/aluminum	10	254	7	178	1 1/2	38	17.6	500
B10BL	Lock-in/bronze	10	254	7	178	1 1/2	38	45.9	1300
B10CL	Lock-in/chrome	10	254	7	178	1 1/2	38	45.9	1300
B10ADL	Lock-in/double-grip/aluminum	10	254	11 1/4	286	1 13/16	46	21.2	600

Accessories: Service Kits

You should service your winches at least once during the preseason. However, twice a season is best if your boat lives in salt water. If you race your boat hard, you may want to maintain your winches before every regatta. Keep your winches clean and operating smoothly by flushing frequently with fresh water. Check pawls and springs, bearings, gears, and spindles for signs of wear and corrosion.

For more details, consult the maintenance manual.

Installation manuals and parts lists are available online at www.harken.com.

BK4514

BK4513

BK4519

Radial winch

Classic winch

Fits winches

WHICH PARTS DO I GREASE AND WHICH DO I OIL ON MY HARKEN WINCHES?

Grease all metal gears and roller bearings with Harken Winch Grease. It's highly resistant to salt and fresh water, works in all temperatures, and protects against corrosion. NEVER grease pawls or springs because grease causes them to stick. Instead, lubricate with Harken Pawl Oil for optimal rotation. Radial winches and carbon winches have composite roller bearings that do not need to be lubricated.

BK4515 BK4516

BK4517

				i ito will	UIICO	
Part No.	Description	Includes	Radial	Performa	Classic	Custom/ Racing*
BK4512	Winch service kit	10 pawls, 20 springs	2-speed: 15 - 70.2, Rewind, UniPower	20	B6 - B980	1000.3
BK4513	Winch grease	100 ml tube				
BK4514	Winch service case	10 pawls, 20 springs, pawl oil, winch grease, handle repair kit, stickers	2-speed: 15 - 70.2, Rewind, UniPower	20	B6 - B980	1000.3
BK4515	Racing winch service kit/10 mm	10 17-4 PH pawls, 20 springs	80	80		880 - 1150
BK4516	Racing winch service kit/8 mm	10 17-4 PH pawls, 20 springs	60.3, 70.3	35 - 70, Quattro		50 - 650, Air® winches
BK4517	Lock-in handle repair kit	Lock-in knob, spring pin, lock-in spring, isolator, lock-in plate		All hand	lles	
BK4518	Winch drum screw kit	8 screws 8 mm x 20 mm, 8 plastic washers			B48 - B980	
BK4519	Winch drum screw kit	8 screws 8 mm x 20 mm, 8 plastic washers			B16 - B46	
BK4521	Pawl oil for pawls and springs					

^{*}Custom and racing winch service kits might not include all the pawls needed. Please contact Harken.

Captive Reel Winches

Electric & Hydraulic

Harken captive reel winches represent a leap forward in captive winch design. The result of years of intense development at Harken Italy's dedicated facility, captive winches are offered in more sizes than ever, with pulling loads of 1.5 to 70 tons, and for boats from 45 feet and up. All sizes are offered with electric or hydraulic motors. Harken's latest captive winches don't just offer an impressive line speed when hauling in—they can ease a line just as quickly and safely when rapid response is needed. Robust and compact, these belowdeck winches keep topsides clear for a clean, uncluttered look. Use for remote line handling: raise/lower halyard, trim/ease mainsheet—all at the touch of a button or a nudge of a joystick for even more fine-tune line speed or trimming control.

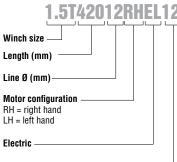
Captive Reel Winches: 1.5 - 3T

Once the domain of only the largest yachts, a new wave of captive winch design and technology has provided the catalyst for the development of winches for boats in the 14 m -18 m (45'- 60') range. Robust and compact, these belowdeck winches keep top-sides clear for a clean, uncluttered look. Use for remote line handling: raise/lower halyard, trim/ease mainsheet—all at the touch of a button.

The winch frame and drum are 6061-T6 hardcoat-anodized aluminum. All parts connected to hydraulic or electrical circuitry are positioned on the same side for maintenance. The screw bearings and gear transmission are also located on this side for easy inspection. Bearings are self-lubricated. The main gearbox is sealed and lubricated with oil.

Electric Versions

Electric captives in 1.5-ton and 3-ton sizes come standard with 12-volt or 24-volt power. The 3T version is also available with a 24-volt high-speed (HS) motor. The winch has a single gear and is managed with push buttons for trimming and easing. A mechanical switch limits the stroke of the feeder to prevent overrides. Winches include a dual-function control box with a built-in load controller that combines two products into one, reducing wiring and connection points by almost half and greatly simplifying installation. The dual-function control box supports the Digital System Switch or analog switches. A mix of switches is not supported.


Hydraulic Versions

Hydraulic 1.5-ton and 3-ton captive winches are driven by industrial-sealed, fixed-displacement motors. The synchronized transmission uses two gear sets (four gears) to drive the twin feeder screws. To change line diameter, the gear sets must be replaced. The feeder transmission's twin feeder screws balance the load on the feeder, allowing line to lie smoothly on the drum—even when slack.

The screw design positions the screw close to the drum, reducing winch size.

Electric Part Numbers

Voltage -

12 = 12V24 = 24V

Harken 1.5T and 3T captive winches are offered with an optional built-in 90-degree line feeder for installation where space is limited.

Power/Sheet Size Guide

	Maximum		Maximum		Line Ø				
Part	Part dynamic pull		holdin	holding load		lin	Max		
No.	lb	kg	lb	kg	in	mm	in	mm	
1.5T	3300	1500	5500	2500	1/2	12	3/4	18	
3T	6600	3000	11000	5000	1/2	12	3/4	18	

Loads and converted sizes are guides only. Winches are customized to application. Hydraulic captive reel winches can be driven by different displacement motors. Contact Harken for max pressure details. For line storage lengths see page 227.

Electric Motors

Part	Max lin	ie speed	Max current	Control	Circuit
No. ft/min		m/min	amps	box	breaker
1.5T 12V	39.4	12.0	340	Dual-Function Control Box	HCP1718
1.5T 24V	42.7	13.0	150	Dual-Function Control Box	HCP1717
3T 24V	3T 24V 42.7 13.0		250	Dual-Function Control Box	_
3T 24V HS 164.1 50.0		50.0	230	Motor driver	HCP1720

Hydraulic Motors

Part	Max p	ressure	Flow	rate	Max line speed		
No.	PSI	Bar	gal/min	L/min	ft/min	m/min	
1.5T	1739	120	13	50	115.9	35.0	
3T	2753	190	13	50	99.3	30.0	

Product not stocked. Contact Harken to request quote and lead time.

Captive Reel Winches: 6 - 70T

Captive winches are offered with pulling loads up to 70 tons with both hydraulic and electric drives for boats from 18 m (60') to the largest megayachts. Drum lengths vary to fit individual project requirements. Captives and tensioners are tested at full load before shipping.

The winch frame and drum are 6061-T6 hardcoat-anodized aluminum with a carbon-fiber gear cover to reduce weight. All parts connected to hydraulic or electrical circuitry are positioned on the same side for maintenance. The screw bearings and gear transmission are also located on this side for easy inspection. Bearings are sealed and lubricated with grease. The main gearbox is sealed and lubricated with oil.

Electric Versions

6T winches and larger run off 500-800V DC systems or 400V AC 3-phase supply. Electric motors on winches 9T and higher are customized for the application. The winch has a single gear and is managed with a joystick for trimming and easing. A gear-and-chain transmission drives the feeder screw, allowing the line to lie smoothly on the drum in a single layer. Tapping into the larger battery banks on modern yachts allows the use of electric captives in sizes previously only available in hydraulic. This provides a quieter, more efficient system. Harken has also developed an innovative push/pull captive that allows a single winch and motor to take the place of two.

Hydraulic Versions

Hydraulic winches 6T and up are offered with variable-speed motors. Custom solutions are available for higher loads. The synchronized transmission uses two gear sets (four gears) to drive the twin feeder screws. To change line diameter, the gear sets must be replaced. The feeder transmission's twin feeder screws balance the load on the feeder, allowing line to lie smoothly on the drum—even when slack. The double screw design positions the screws close to the drum, reducing winch size over similarly configured winches. The tensioner system keeps a constant load on the line to prevent overrides.

Hydraulic versions have an openended design to reduce weight.

Designed for easy maintenance.

Self-lubricating feeder screw and sheave allow line to lie smoothly on the drum, even when slack.

Two inner magnetic switches factory-set at the feeder's stroke limits prevent overtravel. Two outer fail-safe limit switches automatically engage the brake.

ELECTRIC

Captive Reel Winches: 6 - 70T

My Song, Baltic 130, 39.60 m (130'), naval architect: Reichel Pugh Yacht Design, Nauta Design @ Baltic Yachts

Power/Sheet Size Guide

	Maxi	mum	Maxi	mum		Line Ø				
Part	art dynamic pull		holdin	holding load		n	Ma	Max		
No.	lb	kg	lb	kg	in	mm	in	mm		
6T	13200	6000	19800	9000	9/16	14	7/8	22		
9T	19800	9000	26400	12000	5/8	16	1	26		
12T	26400	12000	33000	15000	3/4	18	1 1/8	28		
16T	35200	16000	41800	19000	1	24	1 1/4	32		
18T	39700	18000	46307	21000	1	24	1 1/4	32		
25T	55100	25000	66100	30000	1 1/4	32	1 1/2	40		
35T	77175	35000	99225	45000	1 3/8	34	1 15/16	50		
50T	110250	50000	132300	60000	1 9/16	40	2 9/16	66		
70T	154350	70000	176400	80000	1 7/8	48	2 9/16	66		

Product not stocked. Contact Harken to request quote and lead time. Loads and converted sizes are guides only. Winches are customized to application. Hydraulic captive reel winches can be driven by different displacement motors. Contact Harken for max pressure details. For line storage lengths see page 227.

Flectric Motors

LIGGUIIG IVI	101013			
Part	Max lin	e speed	Max current	Control
No.	ft/min	m/min	amps	box
6T 24V HS	164.1	50.0	395	Motor driver
6T 48V HS	196.9	60.0	210	Motor driver
9T				
12T				
16T	Eor cize	oo OT and large	, electric motors are	ouetomized
18T		Ū	*	
25T	10		Contact Harken with	ii project
35T		requirer	nents for options.	
50T				
707				

Line speeds can vary with each winch and power configuration.

Hydraulic Motors

Part	Max pr	essure	Flow	rate	Max lin	e speed
No.	PSI	Bar	gal/min	L/min	ft/min	m/min
6T	3478	240	18	70	344.5	105.0
9T	3623	250	21	80	259.2	79.0
12T	3623	250	26	100	285.4	87.0
16T	3623	250	32	120	255.9	78.0
18T	4133	285	32	120	255.9	78.0
25T	4061	280	32	120	239.5	73.0
35T	4061	280	32	120	262.5	80.0
50T	4714	325	42	160	295.3	90.0
70T	5076	350	53	200	262.5	80.0

Captive Reel Winches

Active Line Storage

Captive Length Size	Line Ø 12 mm			Line Ø 14 mm		e Ø nm	Line Ø 18 mm		
mm	ft m		ft	m	ft	m	ft	m	
1.5T									
420	49.3	14.9	43.9	13.4	39.1	11.8	33.8	10.2	
520	66.5	20.1	59.4	18.1	53.0	16.0	45.7	13.8	
3T									
420	49.3	14.9	41.4	12.5	39.1	11.8	33.8	10.2	
520	66.5	20.1	55.9	16.9	53.0	16.0	45.7	13.8	
720	101.3	30.6	85.1	25.7	80.1	24.2	69.5	21.0	
920	134.5	41.0	113.0	34.5	106.6	32.5	92.2	28.1	
1120	169.0	51.5	142.0	43.3	133.9	40.8	115.8	35.3	

Captive Length Size	Line Ø 14 mm		Line Ø 16 mm		Line Ø 18 mm		Line Ø 20 mm		Line Ø 22 mm	
mm	ft m		ft	m	ft	ft m		m	ft	m
6T										
810	70.2	21.2	61.6	18.6	56.6	17.1	49.3	14.9	46.0	13.9
1010	110.9	33.5	97.3	29.4	89.4	27.0	78.1	23.6	72.8	22.0
1210	151.6	45.8	133.1	40.2	122.1	36.9	106.9	32.3	99.6	30.1
1410	192.3	58.1	168.8	51.0	154.9	46.8	135.7	41.0	126.4	38.2

Captive Length Size	Line Ø 16 mm		Line Ø 18 mm		Line Ø 20 mm		Line Ø 22 mm		Line Ø 24 mm		Line Ø 26 mm ft m	
mm	ft	m	11	<u>m</u>								
9T												
930	108.2	32.7	96.7	29.2	88.0	26.6	79.1	23.9	76.5	23.1	70.5	21.3
1130	155.6	47.0	139.0	42.0	127.1	38.4	114.5	34.6	110.6	33.4	101.6	30.7
1330	204.2	61.7	182.4	55.1	166.2	50.2	149.6	45.2	144.6	43.7	133.1	40.2
1530	252.2	76.2	225.4	68.1	205.2	62.0	185.0	55.9	178.7	54.0	164.5	49.7
1730	300.2	90.7	268.1	81.0	244.3	73.8	220.1	66.5	212.8	64.3	195.6	59.1

Captive Length Size	Line Ø 18 mm		Line Ø 20 mm		Line Ø 22 mm		Line Ø 24 mm		Line Ø 26 mm		Line Ø 28 mm	
mm	ft	m										
12T												
1130	127.2	38.8	116.0	35.3	104.3	31.8	101.0	30.7	93.2	28.4	89.2	27.2
1330	168.3	51.3	153.2	46.7	138.1	42.1	134.0	40.7	123.4	37.6	118.1	36.0
1530	210.0	63.9	191.0	58.2	172.0	52.4	166.3	50.7	154.0	46.8	147.0	44.8
1730	251.0	76.5	229.0	69.7	206.0	62.8	199.0	60.6	184.0	56.0	176.0	53.6

Captive Length Size	Line Ø 24 mm		Line Ø 26 mm		Line Ø 28 mm		Line Ø 30 mm		Line Ø 32 mm	
mm	ft	ft m		m	ft	ft m		m	ft	m
16T										
1030	92.7	28.0	83.1	25.1	80.4	24.3	74.1	22.4	71.2	21.5
1330	150.9	45.6	135.4	40.9	130.7	39.5	120.5	36.4	115.9	35.0
1530	189.7	57.3	169.8	51.3	164.2	49.6	151.6	45.8	145.6	44.0
1730	228.1	68.9	204.6	61.8	197.6	59.7	182.4	55.1	175.4	53.0

Captive Length Size	Line Ø 24 mm				Line Ø 28 mm		Line Ø 30 mm		Line Ø 32 mm	
mm	ft m		ft	m	ft	ft m		m	ft	m
18T										
1030	92.7	28.0	83.1	25.1	80.4	24.3	74.1	22.4	71.2	21.5
1330	150.9	45.6	135.4	40.9	130.7	39.5	120.5	36.4	115.9	35.0
1530	189.7	57.3	169.8	51.3	164.2	49.6	151.6	45.8	145.6	44.0
1730	228.1	68.9	204.6	61.8	197.6	59.7	182.4	55.1	175.4	53.0

Length Size	Line Ø 32 mm		Line Ø 34 mm		Line Ø 36 mm		Line Ø 38 mm		Line Ø 40 mm	
mm	ft m		ft	m ft m		m	ft	m	ft	m
25T										
1030	68.0	20.7	62.0	18.9	56.1	17.0	54.0	16.4	50.1	15.2
1330	114.0	34.7	104.0	31.6	94.0	28.5	90.2	27.5	83.3	25.4
1530	145.0	44.1	132.0	40.1	118.4	36.1	114.1	34.8	106.0	32.2
1730	175.1	53.4	159.4	48.6	143.3	43.7	138.4	42.2	128.0	39.0
1930	206.0	62.7	187.3	57.1	169.0	51.4	163.0	49.6	150.3	45.8

Captive Length Size	Line Ø 34 mm		Line Ø 36 mm		Line Ø 38 mm		Line Ø 40 mm		Line Ø 42 mm	
mm	ft	ft m		ft m		m	ft	m	ft	m
35T										
1330	81.4	28.41	87.4	26.64	81.6	24.86	76.0	23.18	70.5	21.48
1530	121.3	36.96	113.7	34.65	106.1	32.34	98.9	30.15	91.7	27.94
1730	149.3	45.50	140.0	42.66	130.6	39.81	121.8	37.12	112.9	34.40
1930	177.3	54.05	166.2	50.67	155.2	47.29	144.7	44.09	134.1	40.86
2130	201.1	61.31	188.6	57.48	176.0	53.65	164.1	50.02	153.7	46.36
2330	233.4	71.14	218.8	66.69	204.2	62.25	190.4	58.03	176.5	53.79

Captive Length Size	Line Ø 40 mm		Line Ø 42 mm		Line Ø 46 mm		Line Ø 50 mm		Line Ø 54 mm	
mm	ft	m	ft	m	ft m		ft	m	ft	m
50T										
1670	128.0	39.0	119.8	36.5	111.9	34.1	104.3	31.8	96.5	29.4
1870	162.1	49.4	151.9	46.3	142.1	43.3	132.2	40.3	122.4	37.3
2070	196.5	59.9	183.7	56.0	172.2	52.5	160.4	48.9	148.3	45.2
2270	231.0	70.4	215.9	65.8	202.1	61.6	188.3	57.4	174.2	53.1
2470	265.1	80.8	248.0	75.6	232.3	70.8	216.2	65.9	200.1	61.0
2670	299.5	91.3	280.2	85.4	262.5	80.0	244.4	74.5	226.0	68.9
2870	334.0	101.8	312.3	95.2	292.7	89.2	272.3	83.0	252.0	76.8
3070	368.1	112.2	344.5	105.0	322.5	98.3	300.5	91.6	277.9	84.7

Captive Length Size	Line Ø 48 mm		Line Ø 52 mm		Line Ø 56 mm		Line Ø 60 mm		Line Ø 64 mm	
mm	ft	m	ft	m	ft m		ft	m	ft	m
70T										
1670	117.5	35.8	109.9	33.5	102.7	31.3	95.5	29.1	88.3	26.9
1870	150.9	46.0	141.1	43.0	131.9	40.2	122.7	37.4	113.5	34.6
2070	184.4	56.2	172.6	52.6	161.4	49.2	150.3	45.8	138.8	42.3
2270	217.9	66.4	203.7	62.1	190.6	58.1	177.5	54.1	164.0	50.0
2470	251.3	76.6	235.2	71.7	220.1	67.1	204.7	62.4	189.3	57.7
2670	285.1	86.9	266.7	81.3	249.3	76.0	232.0	70.7	214.6	65.4
2870	318.6	97.1	297.9	90.8	278.5	84.9	259.2	79.0	239.5	73.0
3070	352.0	107.3	329.4	100.4	308.1	93.9	286.4	87.3	264.8	80.7

Line Tensioners

Harken lightweight line tensioners are available with either electric or hydraulic power. They provide pull to prevent line slack and overrides. Both in-line and through-deck tensioners have powered belts encasing both sides of the line, doubling pull and grip capabilities compared to other versions on the market. Tensioner manifolds are independently plumbed and include a solenoid directional cartridge to optimize tensioner functions. The pay-out circuit includes a pressure-release valve to adjust tensioner pull force. The pay-in circuit includes a relief valve to control drag and to help prevent overrides.

CTO: IN-LINE TENSIONER

For use with our smallest, lightest captive reel winches from 1.5T-3T. Like our CT2 model, two independently-powered belts collaborate to keep the line well-managed. Available for hydraulic or 12-volt systems.

CT1: 90-DEGREE LINE TENSIONER

Use with winches from 3T to 9T.
Sealed roller bearing sheave.
Mounts above or belowdeck.
Symmetrical for right hand/left hand mounting.
Handle 80-degree to 120-degree line wraps.

CT2: IN-LINE TENSIONER

Use with winches from 3T to 25T. Two independently-powered rubber belts drive line off winch drum. Carbon-fiber cover keeps tensioner clean and safe.

CT3: 90-DEGREE THROUGH-DECK TENSIONER

Use with winches from 3T to 25T. 300 mm sandblasted sheave handles line load. Synchronized rubber belt adds additional grip. Stainless steel, anodized aluminum, or carbon cover. Waterproof sealed roller bearings.

Use with winches from 3T to 18T. 300 mm sandblasted sheave handles line load. Synchronized rubber belt adds additional grip. Stainless steel, anodized aluminum, or carbon cover. Waterproof sealed roller bearings.

CT6: 90-DEGREE THROUGH-DECK TENSIONER

Use with winches from 25T to 35T. 300 mm sandblasted sheave handles line load. Synchronized rubber belt adds additional grip. Stainless steel, anodized aluminum, or carbon cover. Waterproof sealed roller bearings.

CT5: 45-DEGREE THROUGH-DECK TENSIONER

Use with winches from 3T to 25T. 45° line deviation minimizes line stress at high loads. Stainless steel, anodized aluminum, or carbon cover. Waterproof sealed roller bearings.

CT7: 90-DEGREE THROUGH-DECK TENSIONER

Use with winches from 50T to 70T. 300 mm sandblasted sheave handles line load. Synchronized rubber belt adds additional grip. Stainless steel, anodized aluminum, or carbon cover. Waterproof sealed roller bearings.

Ordering Winches

1. Choose Drum Material, Speed & Style

Aluminum: aluminum Radial winches in 1-, 2-, and 3-speed self-tailing or plain-top.

Aluminum classic single-speed, plain-top winches in sizes 6 and 8; 2- and 3-speed self-tailing winches sizes 980 and up in aluminum or aluminum/stainless.

Chrome: Chrome Radial winches feature chrome drums with black or white composite bases and tops; 1-, 2-, and 3-speed self-tailing.

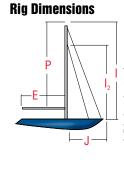
All-chrome Radial winches have chrome bases, drums, and tops; 1-, 2- and 3-speeds; self-tailing or plain-top.

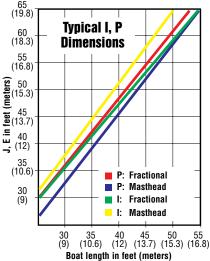
Stainless Steel: stainless steel winches have stainless bases, drums, and tops; 2-, and 3-speed self-tailing; 4-speed winches in some larger sizes.

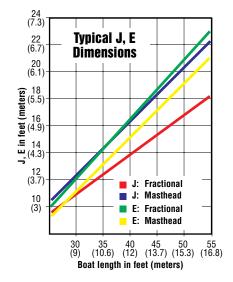
Bronze: bronze Radial winches in 1-, 2-, and 3-speeds; self-tailing or plain-top styles.

Carbon Fiber: carbon fiber winches in 2- and 3-speed self-tailing or top-cleating.

To order large cruising, Megayacht, and Grand Prix racing winches, please contact Harken.


Powered Winches: choose electric or hydraulically driven winches and components. To order hydraulic winches, please contact Harken.


2. Determine size


The **Sizing Chart** selects winches for different applications and rig dimensions. If unsure of the dimensions, use the **Typical Dimensions** graphs. To order large Grand Prix and Megayacht winches, please contact Harken.

3. Choose Ball Bearing Handle

Plain or lock-in handles in chromed bronze, bronze, and aluminum; Speedgrip and standard styles in 203 and 254 mm (8 and 10") lengths.

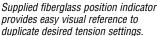
Sizing Chart

		Gen	oa				Maiı	nsail					Spini	naker			Sta	ysail
	St	ieet	Hal	yard	End-b mains		Hal	yard	R	eef	Sho	eet	Hal	yard		ng lift/ eguy	Ha	lyard
Winch	100% fo	ail area retriangle l x .5)	M	ax I	4:1 s max sa (P x E	il area	Ma	ax P	M	ax P	Max sa (I x J)		M	ax I	м	ax I	м	ax I,
size	ft²	m²	ft	m	ft²	m²	ft	m	ft	m m	ft ²	m²	ft	m	ft	m m	ft	m m
6	75	7	25	7.6	_	_	25	7.6	34	10.4	500	46.5	25	7.6	35	10.7	25	7.6
8	115	10.5	36	11	150	14	32	9.8	40	12.2	800	74	36	11	44	13.4	37	11.3
15	135	12.5	39	12	194	18	34	10.5	43	13	893	83	39	12	47	14.2	39	12
20	155	14.5	42	12.8	230	21	38	11.6	46	14	975	91	42	12.8	50	15.2	42	12.8
35	225	21	48	14.6	335	30	43	13.1	53	16.2	1135	105	48	14.6	56	17	48	14.6
40	270	25	54	16.5	410	38	49	14.9	57	17.4	1240	115	54	16.5	61	18.6	54	16.5
46	365	34	69	21	625	58	64	19.5	73	22.2	1530	142	68	20.7	78	23.8	69	21
50	390	36	73	22.2	700	65	68	20.7	78	23.8	1750	162	74	22.5	82	25	73	22.2
60	525	49	82	25	850	79	80	24.4	92	28	2200	204	85	25.9	98	29.9	82	25
70	590	55	86	26.2	1000	93	85	25.9	97	29.6	3000	279	91	27.7	108	33	86	26.2
80	950	88	100	30.5	1350	125	102	31.1	_		_	_	105	32	_	_		_

Single-Acting Integral Backstay Adjusters

Harken's integral hydraulic backstay adjuster provides the power to optimize sail shape quickly for racers and adjust mast tension for smoother furling for cruisers. The cylinder features a built-in, single-acting pump.

Every unit includes a hardcoat-anodized aluminum cylinder and pump, valve, and stainless pump handle with two attachment options: 1) a roll pin, that when installed, locks the handle permanently, 2) the roll pin can be left off and the handle may be inserted when needed, but stored separately. Cylinders include a clevis pin on both ends. A fiberglass position indicator attached to the top clevis pin slides down the cylinder as it's retracted for repeatable tension settings. Standard eye-jaw toggles fit all Harken cylinders and are recommended on all installations.


The pressure-release knob turns clockwise to close and pump, counterclockwise to release. When closing the pump, the knob cannot be over-tightened by hand, preventing damage to the valve. Release speed depends on how far open the knob is turned. Pressure relief is factory set to prevent crew from over-tensioning the backstay.

Harken integral backstay adjusters come in four sizes to fit boats 9 - 18 m (30 - 60') with stay diameters of 5 - 10 mm (7/32 - 3/8").

Harken recommends attaching a toggle to the cylinder's bottom clevis to accommodate stay movement. Standard eye-jaw toggles fit all Harken cylinders.

For replacement position indicator assembly, order part number H-85275.

Wine & Spirits, GS 48, 14.90 m (48.9') @ Fabio Taccola / Grand Soleil Yachts

Part		M wir	ax e Ø	Stro	oke		er length sed)*	Weig	jht**	Gap (n/pin Ø	Pull fo	orce ‡
No.	- Size	in	mm	in	mm	in	mm	lb	kg	in	mm	lb	kg
HCI006BCC	-6	7/32	5.5	14.17	360	30	762	8.36	3.79	7/16	11.1	3770	1710
HCI010BCC	-10	9/32	7	14.17	360	30	762	8.36	3.79	1/2	12.7	4710	2136
HCI012BCC	-12	5/16	8	14.17	360	30	762	9.72	4.41	5/8	15.9	6710	3043
HCI017BCC	-17	3/8	9.5	14.17	360	30	762	9.72	4.41	5/8	15.9	8390	3808

^{*}For pin center length open (PCLO) add stroke length to pin center length closed. **Rod ends (forks) included in weights.

[‡] Relief valves are preset to limit max tension (pull force) to recommend rigging loads and cylinder design limits. Each cylinder provides a specific max pull force.

HYDRAULIC CYLINDERS

Harken offers a full range of hydraulic cylinders to handle mast, sail, and keel controls on cruising and racing yachts.

Components are designed to reduce weight and size and to increase structural strength for years of high-stress use in corrosive marine environments. They are available in sizes -6 (25mm bore) to -195 (145mm bore) to fit everything from 9 m (30') racer/cruisers to 46 m (150')-plus megayachts. Harken-certified service centers can be found in countries around the world.

*For an additional fee, clear-anodized aluminum is available. Clear anodization provides less protection than Hard Lube anodizing.

Stainless Steel and titanium are also available.

Cylinder end fittings are stainless steel only

Stands up to sun, salt, and time

- Cylinders come standard with Hard Lube-anodized aluminum or titanium for GP cylinders. Other options available upon request.
- High-strength XM-19 stainless steel rods and pins.
- Durable, low-friction polyurethane seals and bronze-filled PTFE piston seals.
- O-rings in nonabsorbent polyurethane seals for consistent fit.

Variety of cylinder types

- Single-acting; double-pull; locking; boom vangs.
 Single-acting cylinders have air-spring returns, but can be ordered in push, push/pull, and pull/ pull custom versions.
- A variety of standard strokes are available.
 Custom lengths available upon request

Selection of rod end fittings

- · Standard cylinders come with clevis jaw for ends.
- Blocks and different eye types available; see alternate end fittings.
- Smooth anti-snag clevis pins protect rigging and crew.

Hydraulic Cylinders

Maximum air return force ratio is 10:1, not included in pull force calculation. Precharge is a maximum of 100 psi (6.9 bar).

Custom strokes and end fittings available, see next page 233 for ordering information.

Color Max OD Color Colo													٦	Diameter								Pull force **	***				I
Size in mm in mm			å	<u>.</u>	<u> </u>	gth	1	•	1	,	Č	-			Š		ć	© 10	00 psi	@ 200	o psi	@ 300	10 psi	@ 4000 psi		@ 5000 psi	psi
Heap 104 265 187 474 21 037 7 011 776 111 1 25 776 11 5 36 656 288 1270 578 1995 684	Part No.	- Size		a E		sed)*	e A B	jnt": Kg	in volu	e _	Gap/		<u>.</u>	Ē	Ž	_		6 Q	bar kg	_ _ _ _ _ _	oar kg	OLZ QI	bar kg	275 bar Ib k	r Ka	345 bar Ib k	_ 코
He He He He He He He He	HYCS025110265BCC	9-	10.4	265	18.7	474	2.1	0.97	7			11.1	-			1.5		635	288	1270	576	1905	864	2540	_	3175	1440
	HYCS025110360BCC	9	14.2	360	22.4	269	2.5	1.13				11.1						635	288	1270	9/9	1905	864	. 540	1152 3	3175 1	1440
1-10 14.1 2.0 14.4 49, 3.4 14.5 14.5 14.5 12. 12. 12. 12. 12. 13. 13. 13. 1.94 49 12. 13. 19. 14. 14. 15. 15. 14. 14. 15. 14. 14. 15. 14. 14. 15. 14. 14. 15. 14. 14. 15. 14. 14. 15. 15. 14. 14. 15. 15. 14. 14. 15. 15. 14. 14. 15. 15. 14. 14. 15. 15. 14. 14. 15. 15. 14. 14. 15. 15. 14. 14. 15. 15. 14. 14. 15. 15. 14. 14. 15. 15. 14. 14. 15. 15. 14. 14. 15. 15. 14. 14. 15. 15. 14. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	HYCS025110530BCC	9	20.9	530	29.1	739	3.1	1.42	13			11.1				1.5		635	288	1270	9/9	1905	864	. 540	1152 3	3175 1	1440
-10 138 350 24 609 41 188 18 18 12 12 127 138 18 19 19 19 19 19 19 1	HYCS035130230BCC	-10	9.1	230	19.4	494	3.4	1.54		0.19	1/2	12.7						1289	584	2577	1169	3866	1753	5154	2338 6	6443 2	2922
-10	HYCS035130350BCC	-10	13.8	350	24	609	4.1	1.88		0.29		12.7	3/8					1289	584	2577	1169	3866	1753	5154	2338 6	6443 2	2922
12 102 80 20 40 102 102 80 40 208 40 208 40 208 40 208 40 208 40 60 50 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 60 20 40 60 60 40 60 60 50 40 60 60 50 40 60 60 50 40 60	HYCS035130510BCC	-10	20.1	510	31.1	789	5.2	2.37		0.42		12.7	3/8					1289	584	2577	1169	3866	1753	5154	2338 6	6443 2	2922
-12 448 375 248 62 25 63 15 11 40 66 26 264 12 36 16 11 40 66 26 20 11 26 16 26 140 66 22 140 66 22 140 66 22 140 66 22 140 66 26 20	HYCS040160260BCC	-12	10.2	260	20	208	4.6	2.08		0.24								1460	662		1325	4381	1987	5841	2650 7	7302	3312
-12	HYCS040160375BCC	-12	14.8	375	24.8	629	5.6	2.53		0.35		6						1460	662		1325	4381	1987	5841	2650 7	7302	3312
-17 10.2 560 20 6 20 6 4 4 1 2	HYCS040160625BCC	-12	24.6	625	35.6	902	7.8	3.54		0.59		6						1460	662		1325	4381	1987	5841	2650 7	7302	3312
-17 14.8 315 25 6.8 d 6. 8 10.1 31 0.51 0.51 0.51 1.50 1.50 1.30 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5	HYCS045160260BCC	-17	10.2	260	20	202	5.4	2.47		0.35	2/8		3/4					2098	952		1904	6295	2856	8394	3807 10	10492 4	4759
-17	HYCS045160375BCC	-17	14.8	375	25	634	9.9	3.01		0.51	2/8	15.9	3/4				29	2098	952	4197	1904	6295	2856	8394	3807 10	10492 4	4759
-22 167 267 264 568 9.3 4.2 3.4 19.1 2.9 7.3 331 1504 653 309 949 451 -22 157 400 27.3 683 11.2 5.0 62 9.4 19.1 2.0 5 34 19.1 2.0 7.3 316 1504 663 3009 9494 4512 -22 15.7 400 2.7 18.2 1.2 5.0 5 4 19.1 2.0 5 4 19.2 2.0 3 31 19.4 66.3 30.9 99.4 451 2.0 4 19.2 2.0 19.2 2.0 4 19.2 2.0 4 1.2 1.0 2.0 4 19.2 2.0 4 1.2 1.0 2.0 2.0 4 1.0 2.0 4 1.0 1.0 2.0 4 1.0 2.0 4 1.0 1.0 2	HYCS045160800BCC	-17	31.5	800	43.1	1095	10.9	4.96		1.08		15.9	3/4					2098	952	4197	1904	6295	2856	8394	3807 10	10492 4	4759
-2. 15. 40. 27.3 69.3 11.2 50.9 52. 0.86 34 19.1 23/16 53.4 19.2 28.6 73.3 19.2 78.7 19.2 28.7 13.4 19.2 28/16 55.3 34.4 19.1 23/16 55.3 34.4 19.2 23/16 56.3 33.1 11.2 60.9 49.9 41.2 58.3 11.2 30.4 19.2 23/16 57.8 23.1 11.4 430.7 18.4 18.7 43.4 19.2 28.7 11.4 430.7 18.2 43.1 43.4 43.4 43.2 21.2 <t< th=""><th>HYCS055190275BCC</th><th>-22</th><th>10.8</th><th>275</th><th>22.4</th><th>268</th><th>9.3</th><th>4.23</th><th></th><th>0.59</th><th></th><th></th><th>3/16</th><th></th><th></th><th></th><th></th><th>3316</th><th>1504</th><th>6633</th><th>3009</th><th>9949</th><th></th><th>13266 (</th><th>6017 16</th><th>16582 7</th><th>7522</th></t<>	HYCS055190275BCC	-22	10.8	275	22.4	268	9.3	4.23		0.59			3/16					3316	1504	6633	3009	9949		13266 (6017 16	16582 7	7522
-2 35 49 49 7 58 49 18 39 49 19 28 49 19 88 19 48 18 39 39 49 41 18 30 49 41 18 18 39 49 49 41 300 43 18 18 18 30 22 21 65 78 22 31 81 30 40 41 22 31 81 30 40<	HYCS055190400BCC	-22	15.7	400	27.3	693	11.2	60.5		98.0		19.1						3316	1504	6633	3009	9949		13266 (6017 16	16582 7	7522
-30 115 300 25.1 6.37 12.9 5.83 51 0.83 7/8 22.2 21/2 65 7/8 23.1 81 4307 1964 8615 3908 19292 5861 -30 1.7.7 450 1.6 7.0 7.6 1.25 7/8 22.2 21/2 65 7/8 1.6 31 78 1.6 31 81 4307 1964 8615 3908 12922 581 -30 1.7.7 450 1.6 1.6 7.8 22.2 21/2 6 7.8 2 31.7 81 4307 186 3908 12.2 30.8 390 28 19 36.8 31.8 30.8 30.8 390 30.8	HYCS055190900BCC	-22	35.4	900	49.7	1263	19.5	8.84		1.93		19.1						3316	1504	6633	3009	9949		13266 (6017 16	16582 7	7522
-30 17.7 450 31 78 1.25 7/2 21/2 65 7/8 22 3.17 81 4307 1954 8615 3908 1922 5817 -30 4.04 1025 55.4 1407 26.5 12.03 174 28.5 7/8 22.2 21/2 65 7/8 22 31/2 8 9 6283 8615 969 70 80 12.0 10.4 862 27 10.5 8 9 6283 8615 9 9 9 9 9 7 10.2 21.2 21/2 3 7 2 3 9 6 20.0 9 7 1.2 1.2 2 1.2 2 2 2 3 9 4 2 3 4 2 3 4 2 3 4 2 3 4 4 6 2 3 4 2 3 4	HYCS065220300BCC	-30	11.8	300	25.1	637	12.9	5.83	51	0.83		22.2	1/2					4307	1954	8615		12922		17230	7815 2	21537	69/6
-30 4.04 10.55 5.6.4 14.07 2.6.5 12.03 17.4 2.8.5 17.8 2.2.2 2.1.7 6.7.8 2.2.3 3.1.7 8.1 4.07 1.05 5.0.4 1.0.7 2.0.2 2.1.7 6.0.2 3.0.2 2.0.2 2.0.2 2.0.2 2.0.2 2.0.2 2.0.2 2.0.2 3.0.2 3.0.2 2.0.2 2.0.2 2.0.2 3.0.2 3.0.2 3.0.2 2.0.2 3.0.2 2.0.2 3.0.2 2.0.2 3.0.2 2.0.2 3.0.2 2.0.2 3.0.2 3.0.2 3.0.2 4.0.2 <th>HYCS065220450BCC</th> <th>-30</th> <th>17.7</th> <th>420</th> <th>31</th> <th>787</th> <th>15.6</th> <th>7.06</th> <th>9/</th> <th>1.25</th> <th></th> <th>22.2</th> <th>1/2</th> <th></th> <th></th> <th></th> <th></th> <th>4307</th> <th>1954</th> <th>8615</th> <th></th> <th>12922</th> <th></th> <th>17230</th> <th>7815 2</th> <th>21537</th> <th>6926</th>	HYCS065220450BCC	-30	17.7	420	31	787	15.6	7.06	9/	1.25		22.2	1/2					4307	1954	8615		12922		17230	7815 2	21537	6926
40 11.8 300 27.6 700 20.5 9.29 74 11.2 51.4 3 75 1 25 3.8 97 6283 2850 12.66 57.0 18850 85.0 40 11.8 475 44.6 11.2 11.8 1.9 7 5.4 3 75 1 25 3.8 97 6283 2850 12.66 57.0 18850 85.0 85.0 12.66 57.0 18850 85.0 85.0 12.66 57.0 18850 85.0 85.0 85.0 85.0 85.0 18.0	HYCS065221025BCC	-30	40.4	1025	55.4	1407	26.5	12.03	174	2.85		22.2	1/2					4307	1954	8615	3908	12922		17230	7815 2	21537	6926
40 18.7 475 34.4 874 24.9 11.28 11.8 12.4 37 57 3.8 97 6283 2850 1256 570 1885 850 850 850 850 1256 570 1885 850 850 850 850 1256 570 1885 850	HYCS075250300BCC	-40	11.8	300	27.6	200	20.5	9.29		1.22		25.4		. 22	1 25			6283	2850	12566	2200	18850		25133 1	11400 3	31416 1	14250
40 45.3 1150 63.2 160 4.2 4.6 1 5.4 3 75 1 5 3.8 17 6.83 28.6 6.70 18.80 9 6.83 17.5 15.6 67.0 18.80 9 68.8 3.1 3.0 2.84 4.0 1 25 4.0 1 2 4.0	HYCS075250475BCC	-40	18.7	475	34.4	874	24.9	11.28		1.93		25.4		. 22	1 25			6283	2850	12566		18850		25133 1	11400 3	31416 1	14250
48 11.8 300 28.3 71.9 22.3 71.9 22.3 71.9 28.6 31.8 80 1 25 4.07 103 6885 31.2 37.9 6246 20.64 93.68 48 18.7 47.5 35.1 89.2 12.9 21.1 11.8 28.6 31.8 80 1 25 4.07 103 6885 31.23 13.69 6246 20.64 93.68 48 45.3 1150 64 162.6 49.7 22.56 31.2 11.4 31.8 80 1 2 4.07 103 6885 31.2 11.4 31.8 31.2 4.07 103 6885 31.2 11.4 31.8 31.2 4.07 10 12.3 11.4 31.8 31.4 32.4 4.0 11.4 32.4 4.0 11.4 32.4 4.0 11.4 32.4 4.0 11.4 32.4 4.0 11.4 32.4	HYCS075251150BCC	-40	45.3	1150	63.2	1606	42.8	19.4		4.66	-	25.4		. 2/	1 25			6283	2850			18850		25133 1	11400 3	31416 1	14250
48 18.7 475 35.1 89.2 28.8 11.0 28.6 31.8 80 1 25 4.07 103 6885 31.2 31.96 6246 20.64 93.88 93.8 45.3 11.0 64 11.0 88.6 31.8 80 1 25 4.07 103 6885 31.2 31.9 20.6 49.7 11.8 28.6 31.8 80 1 25 4.07 103 6885 31.2 13.6 62.46 20.64 93.8 93.6 4.07 10.8 80 1 2 4.57 11.6 8394 3807 1678 7618	HYCS080250300BCC	-48	11.8	300	28.3	719	23.7	10.73						. 08	1 25			6885	3123			20654		27538 1	12491 34	34423 1	15614
48 45.3 1150 64 162 49.7 25.56 31.2 5.11 118 28.6 31.8 80 1 25 4.07 103 6885 31.2 31.56 92.6 20.54 92.8 31.8 31.8 31.8 31.8 31.8 31.8 31.7 32 4.57 116 8394 3807 167.8 761.5 251.8 1142 500/7.76 11.7 550 39.3 39.9 42.1 19.11 182 2.98 11.4 31.8 31.7 32 4.57 116 8394 3807 167.8 761.5 251.8 1142 -90 16.7 42.5 32.8 11.4 31.8 31.9 4.57 116 32.4 4.5 11.4 32 5.34 136 138 761.5 251.8 1142 20.8 11.4 31.8 31.4 32 4.5 11.4 32 5.34 136 138 14.2 138	HYCS080250475BCC	-48	18.7	475	35.1	892	28.8	13.05						. 08	1 25			6885	3123			20654		27538 1	12491 34	34423 15614	5614
60/76 14.8 375 31.2 36 42.1 11.4 31.8 31.2 90 11.4 32 4.57 11.6 8394 3807 16788 7615 25182 1142 60/76 1.7 550 39.3 99 42.1 19.1 18.2 2.98 11.4 31.8 31.2 90 11.4 32 4.57 116 8394 367 16788 7615 25182 1142 90 16.7 425 35 889 51 12.1 13.8 31.9 9 11.4 32 4.57 116 8394 3807 16788 7615 2518 1422 142 14 20 11.4 32 4.57 116 8394 3807 1678 3408 3418 1432 144 16 144 16 144 16 144 32 5.34 18 1432 144 144 144 144 144 144	HYCS080251150BCC	-48	45.3	1150	64	1626	49.7	22.56										6885				20654		27538 1	12491 34	34423 1	15614
60/76 21,7 550 39,3 999 42.1 19.11 182 2.98 11/4 31,8 31/2 90 11/4 32 4.57 116 8394 807 16788 7615 25182 1142 90 16.7 425 35 889 51 23.15 190 3.11 138 34.9 4 10 11/4 32 5.34 138 1139 51.3 26.78 10287 34.08 15.3 11/2 38.1 11/4 32 5.34 136 11.32 52.678 10.287 34.08 15.2 34.1 11/4 32 5.4 136 11.4 32 5.4 136 11.4 32 5.4 136 11.4 32 34.1 11.4 32 34.1 11.4 32 34.1 34.1 34.1 38.1 41.7 11.4 32 5.4 14.1 44.1 44.1 44.1 44.1 44.1 44.1	HYCS090320375BCC	92-/09-		375	31.3	962	34.5	15.64											3807					33576 1	15230 4	41970 19037	9037
90 16.7 425 35 889 51 23.15 190 3.11 138 34.9 4 100 11/4 32 5.34 185 1139 51.3 26.78 10287 34018 15430 -90 24.6 625 43.3 10.9 62 28.14 268 4.39 13.8 34.9 4 10 11/4 32 5.34 136 11.3 25.2 11.3 25.2 11.4 13.2 25.4 136 16.2 13.4 34.9 4 10 11/4 32 5.4 136 14.19 65.4 18.2 14.19 13.8 4 10 11/4 32 6 15.2 14419 65.4 18.2 19.2 <td< th=""><th>HYCS090320550BCC</th><th>92-/09-</th><th></th><th>220</th><th>39.3</th><th>666</th><th>42.1</th><th>19.11</th><th></th><th></th><th></th><th>31.8</th><th>1/2</th><th></th><th></th><th></th><th></th><th></th><th>3807</th><th></th><th></th><th></th><th></th><th>33576 1</th><th>15230 4</th><th>41970 19037</th><th>9037</th></td<>	HYCS090320550BCC	92-/09-		220	39.3	666	42.1	19.11				31.8	1/2						3807					33576 1	15230 4	41970 19037	9037
-90 24.6 625 43.3 1089 62 28.14 268 4.39 138 34.9 4 100 11/4 32 5.34 138 1138 51.34 136 1138 51.34 136 1138 51.34 136 1149 65.1 1419 65.1 114 32 5.34 136 1419 65.1 1418 1417 1418 1418 1418 1419 65.1 1419 65.1 1419 65.1 1419 65.1 1418	HYCS100320425BCC	06-	16.7	425	35	889	51	23.15		3.11		34.9		l				l				34018		45357 2	20573 56	56696 2	25717
-110 18.7 475 39.9 1014 70.2 31.82 270 4.43 11/2 38.1 41/2 115 13/8 35 6 152 14419 6541 28839 13081 43258 19622 -110 27.6 700 49.4 1255 85.7 11/2 38.1 41/2 115 13/8 35 6 15 1441 6541 28839 13081 43258 19622 -150 18.7 47.5 13/4 44.5 5 1/8 13/1 11/2 38 6.82 173 18862 8556 37724 1711 56882 25667 -150 27.6 13.9 47.1 34.5 13/4 44.5 5 1/8 130 11/2 38 6.82 173 18862 8556 37724 1711 56882 25667	HYCS100320625BCC	06-	24.6	625	43.3	1099	62	28.14		4.39		34.9						11339						45357 2	20573 56	56696 2	25717
-110 27.6 700 49.4 125 85.7 38.86 397 6.51 11/2 38.1 41/2 115 13/8 35 6 152 14419 6541 28839 13081 43258 19622 -150 18.7 47.5 1090 103.9 47.11 353 5.79 13/4 44.5 51/8 130 11/2 38 6.82 173 18862 8556 37724 1711 56585 25667 -150 27.6 10.9 55.3 520 8.52 13/4 44.5 51/8 130 11/2 38 6.82 173 18862 8556 37724 17111 56585 25667	HYCS115350475BCC	-110	18.7	475	39.9	1014	70.2	31.82				38.1	1/2	-			152	14419						57678 2	26162 72	72097 3	32703
-150 18.7 475 42.9 1090 103.9 47.11 353 5.79 13/4 44.5 51/8 130 11/2 38 6.82 173 18862 8556 37724 17111 56585 25667 -150 27.6 700 51.8 1315 121.9 55.3 520 8.52 13/4 44.5 51/8 130 11/2 38 6.82 173 18862 8556 37724 17111 56585 25667	HYCS115350700BCC	-110	27.6	700	49.4	1255	85.7	38.86				38.1		-			152	14419						57678 2	26162 72	72097 3	32703
-150 27.6 700 51.8 1315 121.9 55.3 520 8.52 13/4 44.5 51/8 130 11/2 38 6.82 173 18862 8556 37724 17111 56585 25667	HYCS130380475BCC	-150	18.7	475	42.9	1090	103.9	47.11		5.79		44.5	1/8					18862	- 1	- 1		56585		75447 3	34222 9	94309 4	42778
	HYCS130380700BCC	-150	27.6	700	51.8	1315	121.9	55.3		8.52	l	i		- 1	ı		ı	- 1	- !					75447 3	34222 9	94309 4	42778

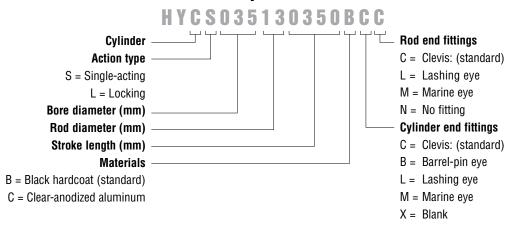
*For pin center length open add stroke length to pin center length closed. **Rod ends (forks) included in weights. ***Max relief setting is 5000 psi/345 bar, recommended setting is 4000 psi/275 bar.

Locking Cylinders

Harken locking cylinders feature adjustable mechanical locks threaded onto the rod to block rod movement and securely fix its position independently of the boat's pressure system. They are commonly used by large cruisers on extended passages to safely lock the rod during pressure release and as a safety backup for the hydraulic system. A long-stroke cylinder is often used during the mast stepping process to lean the mast forward and hook up the furlers. After commissioning, the cylinder's mechanical lock is engaged, limiting the stroke for sailing.

Adjustable lock prevents rod movement during pressure release.

Part		Str	oke	len	enter gth ed)**	Weig	ht***	Vol	ume	Gap	/pin	Во		neter Ro	od	Max	x OD
No.*	- Size	in	mm	in	mm	lb	kg	in³	L	in	mm	in	mm	in	mm	in	mm
HYCL045160375BCC	-17	14.8	375	43.9	1116	11.9	5.42	31	0.51	5/8	15.9	1 3/4	45	5/8	16	2.31	59
HYCL055190400BCC	-22	15.7	400	47.6	1210	19.2	8.71	52	0.86	3/4	19.1	2 3/16	55	3/4	19	2.9	73
HYCL065220450BCC	-30	17.7	450	53.6	1362	27.2	12.36	76	1.25	7/8	22.2	2 1/2	65	7/8	22	3.2	81
HYCL075250475BCC	-40	18.7	475	58.5	1487	41.6	18.86	118	1.93	1	25.4	3	75	1	25	3.8	97
HYCL080250475BCC	-48	18.7	475	59.3	1505	49.6	22.52	129	2.11	1 1/8	28.6	3 1/8	80	1	25	4.1	103
HYCL090320550BCC	-60	21.7	550	67	1701	70.1	31.82	182	2.98	1 1/4	31.8	3 1/2	90	1 1/4	32	4.6	116
HYCL100320625BCC	-90	24.6	625	74.4	1889	98.9	44.85	279	4.57	1 3/8	34.9	4	100	1 1/4	32	5.34	136


For pull forces, see cylinder with corresponding bore and rod diameter on page 232.

*Specify rod and clevis end fittings by adding the appropriate suffix to end of part number. See page 234.

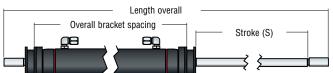
Ordering Single-Acting & Locking Cylinders

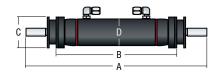
To order use the chart below. Standard cylinders are black hardcoat-anodized with clevises on both ends. Additional cylinder and rod end options of marine eyes, barrel pin eyes, lashing eyes, and blank end fittings are available for a slight upcharge. For optional materials and fittings, replace the last three letters of the part number with your selections.

Standard Cylinder Part Number

^{**}For pin center length open add stroke length to pin center length closed. ***Rod ends (clevis) included in weights.

Double-Pull Cylinders


Double-pull cylinders have rods on both ends and are used with mainsheet travelers or jib sheet car systems to easily adjust loaded sails. As oil is pumped into the cylinder, the rod pulls the traveler while the other rod eases. Reverse the process and the eased rod pulls the other way. Delrin® isolaters separate the cylinders from the metal elements of the hull to prevent corrosion.


What makes Harken double-pull cylinders unique is the way they are installed on the boat. To take the cylinder off the mounting brackets for service, the user simply removes four screws. leaving both brackets in place.

Double-pull cylinders do not come with end fittings on the rod because of the variety of cylinder functions. On page 233, you'll find a selection of end fittings to choose from. Fittings are sold separately.

Double-Pull Cylinder Part Number

Cylinders are made to order. Specify desired stroke length in millimeters and optional end fittings when ordering.

Hydraulic

Action type

P = Double-acting pull/pull

Bore diameter (mm)

Rod diameter (mm)

Stroke length (mm)

Materials

B = Black hardcoat-anodized aluminum

Optional rod end fittings (specify each end separately)

C, L, or N (see page 233 for options); rod end blocks (see page 235)

Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.

		Zero:	stroke		stroke spacing	Mou	ntina	Outs	ide Ø	Rod	Rod t	hread	We	eight
Part			h (A)*		**		erØ(C)		D)	thread size		igth	lb @ zero stroke	kg @ zero stroke
No.	- Size	in	mm	in	mm	in	mm	in	mm	UNF 2A	in	mm	length + lb/in stroke	length + kg/mm stroke
HYCP02511xxxxBNN	-6	11.84	300.8	8.55	217	1.6	41	2	51	7/16-20	1	25	2.07 + .14	0.94 + .002
HYCP03513xxxxBNN	-10	13.86	352	9.27	235.5	1.9	47	2.2	57	1/2-20	1.6	41	3.41 + .25	1.55 + .005
HYCP04016xxxxBNN	-12	13.56	344.5	9.03	229.4	1.9	47	2.2	57	5/8-18	1.6	41	3.87 + .33	1.76 + .006
HYCP04516xxxxBNN	-17	13.85	351.9	9.31	236.4	1.9	47	2.3	58	5/8-18	1.6	41	4.31 + .35	1.96 + .006
HYCP05519xxxxBNN	-22	15.81	401.6	10.22	259.6	2.2	55	2.9	73	3/4-16	2.1	53	7.05 + .51	3.20 + .009
HYCP06522xxxxBNN	-30	17.36	441	11.77	298.8	2.2	55	3.2	81	7/8-14	2.1	53	9.48 + .63	4.30 + .011
HYCP07525xxxxBNN	-40	22.31	566.7	14.16	359.7	3	76	3.8	97	1-12	3.2	82	16.21 + .87	7.36 + .016

Overall cylinder length equals zero stroke length plus two times the desired stroke. **Overall bracket spacing equals zero stroke bracket spacing plus the desired stroke.

Cylinder Blocks & Toggles

Rod End Blocks

Cylinders can be set up to use a reverse purchase to move loaded lines controlling functions such as Cunninghams, stay deflectors, travelers, and athwartship jib systems. Harken offers a variety of blocks to help facilitate different reverse purchase arrangements. Blocks are rigid when mounted to the rod. They are available in single, single with becket, and double versions for reverse purchases from 1:2 to 1:4. Custom lashed on V block options are available upon request.

Eye/Jaw Toggles

An eye/jaw toggle provides a cylinder with two axis points of articulation to reduce wire, rod, and end fitting fatigue. Toggles are available in 11 - 44 mm (7/16" - 1 3/4") to match cylinder pin sizes. Eye/jaw toggles are commonly sold with Harken integral backstay cylinders as well as standard cylinders used for standing rigging.

Although slightly longer than blocks with stacked sheaves, our reverse purchase rod end blocks allow the sheaves to align the load directly with the cylinder, preventing premature wear and seal failure.

DRAULICS

ROD END BLOCKS

Cylinder with V block custom configuration

Rod End Blocks

		Fits rod	Rod thread		She	ave			
Part		Ø	size	Weight	Ø	j	Len	igth	Reverse
No.	Description	mm	UNF A	kg	in	mm	in	mm	purchase
HYCBS11	Single	11	7/16-20	0.44	2.0	52	4.0	101	1:2
HYCBD11	Double*	11	7/16-20	0.56	2.0, 1.3	52, 33	5.5	139	1:3, 1:4
HYCBS13	Single	13	1/2-20	0.44	2.0	52	4.0	101	1:2
HYCBD13	Double*	13	1/2-20	0.55	2.0, 1.3	52, 33	5.5	139	1:3, 1:4
HYCBS16	Single	16	5/8-18	0.80	3.2	82	5.2	132	1:2
HYCBB16	Single/becket	16	5/8-18	0.97	3.2	82	7.4	188	1:3
HYCBD16	Double	16	5/8-18	1.02	3.2, 2.0	82, 52	7.5	189	1:4
HYCBS19	Single	19	3/4-16	0.99	3.2	82	5.7	144	1:2
HYCBB19	Single/becket	19	3/4-16	1.24	3.2	82	7.9	200	1:3
HYCBD19	Double	19	3/4-16	1.29	3.2, 2.0	82, 52	7.9	201	1:4
HYCBS22	Single	22	7/8-14	1.69	4.3	108	7.4	189	1:2
HYCBB22	Single/becket	22	7/8-14	2.19	4.3	108	10.8	275	1:3
HYCBD22	Double	22	7/8-14	2.38	4.3, 3.2	108, 82	10.9	278	1:4

EYE/JAW TOGGLES

Eye/Jaw Toggles

Part	Jaw/	pin Ø	Le	ngth	Fits bore/rod Ø
No.	in	mm	in	mm	mm
HYHTEJS11	7/16	11.1	2.0	50.8	25/11
HYHTEJS13	1/2	12.7	2.2	55.9	35/13
HYHTEJS16	5/8	15.9	2.5	63.5	40/16 & 45/16
HYHTEJS19	3/4	19.1	2.9	73.7	55/19
HYHTEJS22	7/8	22.2	3.3	83.8	65/22
HYHTEJS25	1	25.4	3.7	94	75/25
HYHTEJS29	1 1/8	28.6	4.1	104.1	80/25
HYHTEJS32	1 1/4	31.8	4.5	114.3	90/32
HYHTEJS35	1 3/8	34.9	5.6	142.2	100/32
HYHTEJS38	1 1/2	38.1	5.7	144.5	115/35
HYHTEJS44	1 3/4	44.5	7.2	182.6	130/38

Boom Vangs

Hydraulic vangs change the height of the boom to help control sail shape. They also function as a topping lift to hold the boom up when reefing and to keep it level when the sail is flaked. Harken offers a full range of vang cylinders. The HYCV single-acting gas return is the standard vang used for most boats. Double-acting push/pull vangs can be custom ordered.

Megayacht Double-Acting Boom Vangs

For larger yachts with heavier booms, Harken offers more powerful push/pull double-acting vangs. Today's ever-larger, stiffer hull structures and heavier roller-furling booms dramatically increase compression loads on megayacht boom vangs. This can result in cylinder rods buckling. Harken helps prevent this by transferring loads to the outer housing tube, eliminating the load on the rod. Please contact Harken for more information on these designs.

Ordering Boom Vangs

All vangs are made to order. Specify desired PCLC (pin center length closed) in millimeters rounded to the nearest 10mm. Standard vangs are black hardcoat-anodized aluminum with rod clevis and cylinder end clevis.

Harken Mega Yacht G vangs come standard with an adjustable clevis that allows for +/- 25mm of adjustment to the PCLC. Options include a mechanical ruler engraved for a quick visual position indication. Harken also offers a laser position indicator installed inside the vang. Carbon painted extension tubes are available on most sizes.

Mega Yacht G Vangs

					Pull load	load				Push load***	ad * * *
		@ 200 1.40	@ 2000 psi	@ 3000 psi	10 psi	98. ©	@ 3625 psi	@ 400	@ 4000 psi	@ 3625 psi	5 psi
Part No.*	- Size**	ਰ ਵ	oar kg	01 7 q1	uar Kg	007 4	oar kg	c/7 ql	oar kg	nc,7 ql	nar Kg
CXXXX	20T	24340	11040	36505	16560	44090	20000	48675	22080	44090	20000
CXXXX	25T	30420	13800	45635	20700	55115	25000	60845	27600	55115	25000
CXXXX	30T	37035	16800	55550	25200	67240	30500	74240	33675	67240	30500
CXXXX	40T	48940	22200	73410	33300	88180	40000	97885	44400	88180	40000
CXXXX	20T	61860	28060	92790	42090	112125	20860	128970	28500	112125	20860
CXXXX	65T	78925	35800	118385	53700	143100	64910	157410	71400	143100	64910

Loading Information

						Pull force	orce					Return force	force
		@ 100 69	@ 1000 psi 69 bar	@ 2000 psi 138 bar	0 psi bar	@ 3000 psi 207 bar	0 psi bar	@ 400 276	@ 4000 psi 276 bar	@ 5000 psi 345 bar	5000 psi 345 bar	@ 600 psi 41 bar**) psi Ir**
Part No.	- Size	q	ķĝ	q	ķĝ	a	kg	q	kg	a	kg	<u>e</u>	kg
Single-Acting													
HYCV040220255BCCXXXX	-12	106	48	1271	277	2437	1105	3603	1634	4769	2163	1060	481
HYCV045250280BCCXXXX	-17	177	80	1797	815	3416	1550	5036	2284	9299	3019	1443	655
HYCV055250280BCCXXXX	-22	718	326	3691	1674	6664	3023	9636	4371	12609	5719	2255	1023
HYCV065320330BCCXXXX	-30	736	334	4418	2004	8099	3674	11781	5344	15463	7014	2945	1336
HYCV075300330BCCXXXX	-40	1600	726	7442	3375	13283	6025	19124	8675	24966	11324	4241	1924
HYCV090380420BCCXXXX	09-	2081	944	9935	4507	17789	6908	25643	11632	33497	15194	5773	2618
HYCV100480450BCCXXXX	-90	2265	1028	12071	5475	21876	9923	31681	14370 4	41486	18818	7540	3420
HYCV115540515BCCXXXX	-110	-110 2815	1277	1277 15173	6882		27531 12488	39888	18093	39888 18093 52246	23698	9543	4328

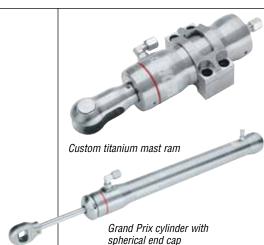
^{*}Return force varies based on oil pressure and buckling strength for different PCLCs. **600 psi is the standard return gas pressure; maximum allowed is 1000 psi. XXXX in part number replaced by PCLC in mm rounded to nearest 10 mm.

				^ə in cente	Pin center length closed (PCLC)	closed	(PCLC)	Wei	Weight		Volume	9					Diameter	eter				
		Stroke	ke	Ē	<u>-</u>	Ma	Max	Base weight lb +	Base weight lb + Base weight kg +	Retracted	ted	Extended		Gap/pin		Bore	æ	Rod	Housi	100 gr	Housing OD Extension tube OD	tube OD
Part No.	- Size	.⊑	E	.⊑	E	. 드	шш	(PCLC x lb/in)	- Size in mm in mm in mm (PCLC x lb/in) (PCLC x kg/mm)	in ₃	_	in³	. <u>=</u>	in mm		in mm		in mm		ш	in mm in	mm
Single-Acting																						
HYCV040220255	-12	10.0	-12 10.0 254 55	22	1397	89	2260	2.940 + 0.126	1.33 + 0.00225	12	0.19		2/8		15.9 11/2 40	40	2/8	22	1.98	20	1.98	20
HYCV045250280	-17	11.0	279	22	1397	100	2540	4.965 + 0.131	2.25 + 0.00234	18	0.29		2/8	15.9	1 3/4	45	-	22	2.27	28	2.19	26
HYCV055250280	-22	11.0	279	22	1397	104	2640	4.026 + 0.244	1.83 + 0.00436	33	0.54		2/8		15.9 2 3/16	22	1	25	2.86	73	2.50	64
HYCV065320330	-30 13.0	13.0	330	22	1397	107	2720	9.139 + 0.263	9.139 + 0.263 4.15 + 0.00470	48	0.78		3/4	19.1	2 1/2	65	1 1/4	32	3.17	81	2.86	73
HYCV075320330	-40	-40 13.0 330	330	22	1397	116	2960	13.076 + 0.300	13.076 + 0.300 5.93 + 0.00535	9/	1.24		2/8	22.2	3	75	1 1/4	32	3.80	97	3.17	81
HYCV090380420	09-	-60 16.5 419	419	22	1397	152	3860	22.092 + 0.449	22.092 + 0.449 10.02 + 0.00802	130	2.12		1	25.4	25.4 3 1/2	90	1 1/2	38	4.57	4.57 116	3.86	98
HYCV100480450	06-	-90 17.8 451	451	65	1651	1651 180	4570	36.369 + 0.666	36.369 + 0.666 16.50 + 0.01189 174		2.85		1 1/4	31.8	4	100	1 7/8	48	5.34	136	4.57	116
HYCV115540515	-110	20.3	515	20	1778	182	4620	48.320 + 0.963	HYCV115540515 -110 20.3 515 70 1778 182 4620 48.320 + 0.963 21.92 + 0.01720 250		4.1		1 3/	3 34.9	4 1/2	115	1 3/8 34.9 4 1/2 115 2 1/8	54	00.9	6.00 152	5.34	136

^{*}part number assigned per order, all custom made **sizes based on 250bar/3625 psi, max pressure is 275bar/4000 psi *** Push load is the theoretical load, exact push load based on PCLC

Grand Prix Cylinders

Used for mast, sail, and keel controls, Harken Grand Prix cylinders were specifically designed to withstand the stresses of high-intensity racing. Their longevity and reliability are evident in the selection of high-quality materials and components.


Cylinder housings are machined from aerospace grade titanium. High-strength stainless steel rods provide superior strength and corrosion resistance. 10,000 psi cylinders are available upon request.

Cylinders are offered with clevis jaws and a variety of fittings. Available in push, pull, pull/pull and push/pull styles.

Grand-Prix cylinders are only intended for systems with a vigorous maintenance schedule, as they are built for extremely high loads at a minimal weight.

All Grand Prix cylinders are made to order

To order, specify stroke length in millimeters and rod and cylinder end fitting options. Contact Harken for weights and volumes.

spherical end cap

Grand Prix cylinder with V block

	Bo	re	Ro	nd		Pull f	orce**	
Part	Q		Q		@ 5000 p	si/345 bar	@ 7500 ps	si/517 bar
No.*	in	mm	in	mm	lb	kg	lb	kg
HYCS01906xxxx	3/4	19	1/4	6	1963	891	2945	1336
HYCS02508xxxx	1	25	5/16	8	3543	1607	5315	2411
HYCS02910xxxx	1 1/8	29	3/8	10	4418	2004	6627	3006
HYCS03210xxxx	1 1/4	32	3/8	10	5584	2533	8376	3799
HYCS03511xxxx	1 3/8	35	7/16	11	6673	3027	10009	4540
HYCS04011xxxx	1 1/2	40	7/16	11	8084	3667	12126	5500
HYCS04513xxxx	1 3/4	45	1/2	13	11045	5010	16567	7515
HYCS04814xxxx	1 7/8	48	9/16	14	12563	5699	18845	8548
HYCS05014xxxx	2	50	9/16	14	14465	6561	21698	9842
HYCS05516xxxx	2 3/16	55	5/8	16	17257	7828	25886	11742
HYCS06018xxxx	2 3/8	60	11/16	18	20295	9205	30442	13808
HYCS06519xxxx	2 1/2	65	3/4	19	22335	10131	33502	15196

*Specify material choice and rod and clevis end fittings by adding appropriate 3-letter code to end of part number. See page 233. Contact Harken to request quote and lead time. **Maximum air return force ratio is 10:1, not included in pull force calculation. Precharge is a maximum of 100 psi (6.9 bar).

HYDRAULIC VALVES & MANIFOLDS

Harken offers a complete line of lightweight, low-profile valves and manifolds for hydraulic systems. Harken standard valves are half the weight of most styles, with Grand Prix versions sculpted to eliminate more weight. An independent pressure-relief function in each valve allows you to match the hydraulic power to each individual function's working loads. An adjustable flow control integrated into each valve fine-tunes the speed of release.

High-strength, lightweight

- Valves, manifolds, standard valve panels corrosion-resistant, hardcoat-anodized aluminum; stainless fittings for strength.
- Lightweight composite handles textured, contoured for secure grip.

Valves with independent relief, release, and flow match system loads

- Each valve has independent pressure relief for individualized pressure adjustment.
- Each valve has integrated adjustable flow control for fine-tuning release speed.
- Minimum flow rate is 8 L/min (2.1 gpm).
- Pressure relief and release combined into one part saves weight.

Options

- Standard valves and manifolds handle up to Inline relief valves: control maximum sys-5,000 psi; sculpted Grand Prix valves and manifolds handle up to 10,000 psi.
- · Valves offered with short and long shafts: short shaft fits 3 mm-thick deck/panel; long • Remote dump valves: ease sail controls shaft 4 mm to 25 mm-thick deck/floor.
- Double-acting valves for traveler controls, other functions using twin or double-acting cylinders.
- tem pressure; inline relief valves work with any manual system, manifold-mount reliefs fit Harken manifolds.
- from helm, rail, other positions on boat; use as quick release or regulate speed with optional adjustable flow control.
- Single- and double-sided manifolds accommodate up to nine valves for multiple functions.

Valve handles fit in four directions for easy operation

- · Inverted handles on double-sided manifolds have same open/closed positions; rotation direction for easy access.
- Valve stems have tapered shaft to fit handle socket for secure, tight fit.

Standard

GrandPrix

Short shaft

Long shaft

Relief valve

Double-acting

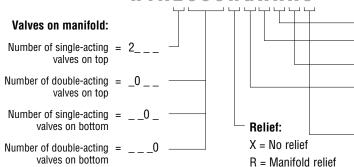
Single-sided manifold

Double-sided manifold

Valve and Pump Panels

Harken offers a variety of valve and pump panel options. Standard panels come mounted on black hard-coated alloy face plates. Common configurations are in the chart below. Custom configurations with different face plates, no face plates, no gauges, and lightweight Grand Prix valve options are also available.

		Panel	length	Panel	height	We	ight
Part No.	Description	in	mm	in	mm	lb	kg
Valve only panels							
HYA1000XPGBXJ	Hydr manifold valve kit-1 valve panel w/gauges	6.00	152.40	8.00	203.20	1.42	0.65
HYA2000XPGBXJ	Hydr manifold valve kit-2 valve panel w/gauges	9.25	234.95	8.00	203.20	2.97	1.35
HYA3000XPGBXJ	Hydr manifold valve kit-3 valve panel w/gauges	12.50	317.50	8.00	203.20	4.53	2.05
HYA4000XPGBXJ	Hydr manifold valve kit-4 valve panel w/gauges	15.72	399.29	8.00	203.20	6.20	2.81
Pump only panels							
HYAPM1BJ	Hydr pump kit 1 speed	8.00	203.20	9.00	228.60	3.62	1.64
HYAPM2BJ	Hydr pump kit 2 speed	8.00	203.20	9.00	228.60	4.72	2.14
Pump & valve panels							
HYA1000XPGB2JL	Hydr panel kit-1 valves w/gauges & 2spd pump left	11.75	298.45	9.00	228.60	5.73	2.60
HYA2000XPGB2JL	Hydr panel kit-2 valves w/gauges & 2spd pump left	15.00	381.00	9.00	228.60	7.27	3.30
HYA3000XPGB2JL	Hydr panel kit-3 valves w/gauges & 2spd pump left	18.25	463.55	9.00	228.60	8.83	4.01
HYA4000XPGB2JL	Hydr panel kit-4 valves w/gauges & 2spd pump left	21.50	546.10	9.00	228.60	10.51	4.77
Dump valves							
HYVDPBF	Valve assy-push button dump valve w/flow	N/A	N/A	N/A	N/A	0.30	0.15
HYVDSPF	String pull dump valve w/flow	N/A	N/A	N/A	N/A	0.20	0.08


Ordering Valve Assemblies

Use this guide to configure your valve assembly order. Standard valve assemblies come with the "J" port fitting option and Grand Prix assemblies come with "X" port fitting. For other fitting options, replace the last letter of the part number with your selection.

Valve Assembly Part Number

HYA2000RGXXXJ

I = In-line relief

*Other fittings available. Contact Harken.

Valve/manifold type:

- G = Grand Prix/sculpted
- P = Standard

Number of gauges:

- X = No gauges
- G = One gauge for each valve

Panel type:

- X = No panel, short shaft
- T = No panel, long shaft
- B = Black hardcoat-anodized aluminum panel
- C = Clear-anodized aluminum panel
- F = Carbon fiber panel
- S = 316 stainless steel panel

Pump:

- X = No pump
- 1 = 1-speed pump
- 2 = 2-speed pump

Port fittings:

- J = Stainless steel -4 JIC pressure port and -6 brass hose barb supply/return port
- X = Plugs on all ports*

TECH

MVP-1 Single Control & MVP-4 Multi Control Panels

Harken single and multifunction valve panels are used by larger cruisers to control systems like backstays, boom vangs, and outhauls. Available as kits, single-function panels are offered with 2-liter reservoirs and multifunction panels with 4-liter reservoirs. Both panels come with pumps, handles, gauge, pressure relief, and release functions. Panels come standard with a 1- or 2-speed pump.

The single-function valve is a simple on/off system that can operate the cylinder remotely, allowing the user to tension the backstay cylinder from the cockpit. Multifunction panels can operate up to four cylinders remotely, with a selector handle choosing 1 of 4 functions. Valve panels feature an easy-to-read gauge and a finger-controlled knob for pressure release.

Single and multifunction panels come standard in black hardcoat-anodized 6061-T6 aluminum. Panels also offered in clear-anodized aluminum, stainless steel, or carbon fiber.

Kit includes multi- or single-function control panel, pump handle, reservoir, low-pressure hose, and suction filter.

Valve Panels

Back of valve panel

Hardcoat-anodized aluminum

Clear-anodized aluminum

Carbon fiber

Stainless steel

MVP-1 SINGLE CONTROL PANEL

MVP-4 MULTI CONTROL PANEL

Part		Len	gth	Wid	ith	De	pth	We	ight
No.	Description	in	mm	in	mm	in	mm	lb	kg
MVP-4 Multi Cor	ntrol								
HYAMXPGB2J	4-function panel/hardcoat-anodized aluminum/2-speed	9 1/4	235	11 1/2	292	5 3/4	146	8.5	3.85
HYAMXPGC2J	4-function panel/clear-anodized aluminum/2-speed	9 1/4	235	11 1/2	292	5 3/4	146	8.5	3.85
HYAMXPGS2J	4-function panel/stainless steel/2-speed	9 1/4	235	11 1/2	292	5 3/4	146	11.9	5.4
HYAMXPGF2J	4-function panel/carbon fiber/2-speed	9 1/4	235	11 1/2	292	5 3/4	146	7.8	3.53
HYAMXPGB1J	4-function panel/hardcoat-anodized aluminum/1-speed	9 1/4	235	11 1/2	292	5 3/4	146	7.4	3.34
HYAMXPGC1J	4-function panel/clear-anodized aluminum/1-speed	9 1/4	235	11 1/2	292	5 3/4	146	7.4	3.34
HYAMXPGS1J	4-function panel/stainless steel/1-speed	9 1/4	235	11 1/2	292	5 3/4	146	10.7	4.86
HYAMXPGF1J	4-function panel/carbon fiber/1-speed	9 1/4	235	11 1/2	292	5 3/4	146	6.6	2.99
MVP-1 Single Co	ontrol								
HYASXPGB2J	Single-function panel/hardcoat-anodized aluminum/2-speed	9 1/4	235	11 1/2	292	5 3/4	146	6.9	3.13
HYASXPGC2J	Single-function panel/clear-anodized aluminum/2-speed	9 1/4	235	11 1/2	292	5 3/4	146	6.9	3.13
HYASXPGS2J	Single-function panel/stainless steel/2-speed	9 1/4	235	11 1/2	292	5 3/4	146	10.3	4.68
HYASXPGF2J	Single-function panel/carbon fiber/2-speed	9 1/4	235	11 1/2	292	5 3/4	146	6.2	2.81
HYASXPGB1J	Single-function panel/hardcoat-anodized aluminum/1-speed	9 1/4	235	11 1/2	292	5 3/4	146	5.7	2.59
HYASXPGC1J	Single-function panel/clear-anodized aluminum/1-speed	9 1/4	235	11 1/2	292	5 3/4	146	5.7	2.59
HYASXPGS1J	Single-function panel/stainless steel/1-speed	9 1/4	235	11 1/2	292	5 3/4	146	9.1	4.14
HYASXPGF1J	Single-function panel/carbon fiber/1-speed	9 1/4	235	11 1/2	292	5 3/4	146	5	2.27

Compact Control Panel

Harken's Compact Control Panel provides sailors with a single-speed, single-function panel pump for remote cylinder operation. This no-frills model is clean and uncomplicated, with the same quality you expect from a Harken hydraulic product. The double-acting pump delivers oil when the pump handle is pushed and pulled, moving oil efficiently through the system. The panel's pressure-release knob cannot be over-tightened by hand and cause damage to the valve. Pressure relief is factory-set at a maximum 5000 psi to prevent crew from over-tensioning the system. The panel's small footprint takes up very little space, providing a variety of mounting options. The wide bolt pattern on the pump minimizes stress and stabilizes the pump.

The kit comes with pump, valve manifold, 2-liter tank, handle, filter, and hose.

Available in black hardcoat-anodized 6061-T6 aluminum.

Back of valve panel

Compact Control Panel

Part		Le	ngth	Wi	dth	Dep	oth	We	eight
 No.	Description	in	mm	in	mm	in	mm	lb	kg
HYACXPXB1J	Compact single-function panel/hardcoat-anodized/1-speed	9	229	6 1/2	165	2 9/16	65	5	2.27

Timbalero 3, G4, 12.14 m (39.83'), DNA Performance Yachts

Harken offers 1- and 2-speed pumps for hydraulic systems. Our 2-speed pump automatically shifts to the next speed when a preset point is reached. The 1-speed pump is a simpler alternative but features the same high-quality components. 1-speed pumps are used for smaller and midsize hydraulic systems, usually on MVP or compact panels. 2-speed pumps are used on systems with higher oil volume cylinders and need faster reaction time. They are also available on MVP panels. Pressure relief on 1- and 2-speed pumps is factory-set to a maximum of 5000 psi. Mounting patterns for all pumps are identical, making upgrades easy.

An optional adhered isolation plate further improves load distribution by transferring torque directly to the mounting surface rather than the bolt holes when mounting without a face plate. Pumps have 7-degree splined shafts to ensure a tight fit and to allow the handle to be mounted at the sailor's preferred pumping angle.

Hydraulic Rotary Pumps

Harken offers two sizes of multi-speed, pedestal-driven rotary pumps for Grand Prix race boats. Pumps are made of corrosion-resistant hard lube-anodized aluminum, with aluminum, titanium, and stainless-steel components. Both pumps are bi-directional and have the same displacement if rotated in either direction. All pumps include a non-return valve on the outlet to prevent backflow.

10 cc Pumps

A female spline attaches these pumps directly to any Harken pedestal. Six double-stepped pistons save weight and feature connecting rods for piston return rather than springs. Three fasteners provide quick connect/disconnect mounting. The 10 cc pump shifts from 1st to 2nd gear both automatically and manually, with automatic shift points determined by the maximum output of the grinders. If fewer crew are grinding and not enough power is generated to reach the automatic shift point, pumps can be shifted manually.

Adjustable Cam Multiple Displacement Pump

Developed for the America's Cup foiling monohulls, these pumps allow adjustment of flow rates per available grinder input versus pre-set flow/pressure levels. The pump has two banks that may be adjusted by changing piston size with inserts along with different cam positions to allow for flow from 4.75 cc to 16.3 cc per revolution for each bank. Harken will help you determine which setup is best. If requirements change, Harken can upgrade the pump to a different set of pistons insert and cam position to meet them. The pump also has an option of a built-in shift block (manual or electric) making it a 2- or 3-speed pump. A remote shift option (manual or electric) is also available. Please contact Harken for more information.

Optional isolation plates made of extremely resilient G10 improve load distribution by transferring torque directly to the mounting surface.

1-SPEED PUMP

2-SPEED PUMP

10 CC ROTARY PUMPS

			Output	/stroke (push an	d pull)		Max					
		1	st	2r	ıd	3r	d	pres	sure	Ports/fi	ittings	We	ight
Part No.	Description	in³	CC	in³	CC	in³	CC	psi	bar	Suction	Pressure	lb	kg
HYPM1	1-speed pump with pressure relief	0.25	4.1					5000	345	3/8" hose barb	1/4" 37° JIC	3.2	1.44
HYPM2	2-speed pump/auto shift with pressure relief	0.99	16.3	0.25	4.1			5000	345	3/8" hose barb	1/4" 37° JIC	4.3	1.95
НҮРМЗМР	Pump anti-torque mounting plate											0.1	0.07

		0	utput/Re	volution			М	ax					
		1:	st	2r	ıd		Pres	sure		Ports,	/Fittings	We	ight
Part No.	Description	in	CC	in	CC	Max RPM	psi	bar	input spline	suction	Pressure	lb.	kg
HYPR262	10 cc two-speed pump	0.63	10.4	0.26	4.3	400	7500	517	25mm female spline	-6 JIC	-4 jic	6.3	2.85
HYPR314	Adjustable displacement pump	inch 16. per revo	1 4.75 cc 3 cc/.994 Dution for 14 has tw	cubic in	ıch	400	7500	517	24 mm hex	-12 SAE	one or two -6 SAE	13.73*	6.23*

Hydraulic Reservoirs

Harken offers pressurized carbon fiber/composite reservoirs and vented blow-molded reservoirs for manual hydraulic systems.

Pressurized Reservoirs

All Harken pressurized reservoirs have translucent sections in the reservoir walls, making it easy to monitor oil levels. Pressurized reservoirs require very little maintenance and are cleaner than those that use ambient air pressure. They can be installed in the bilge rather than at pump level to provide a low center of gravity.

Grand-Prix Pressurized Reservoirs

Harken offers Grand-Prix pressurized reservoirs to suit any Grand Prix need. They are among the lightest in existence.

Reservoirs can be built with up to three ports on each end, customizable to whatever application is required. One-way return-line check valves, supply-line shutoff valves, and high-quality regulators are available to meet specific needs. Custom sizes and configurations are available. Contact Harken.

Vented Reservoirs

Harken offers 2- and 4-liter blow-molded reservoirs for standard installations. Reservoirs feature a vented cap to stabilize tank pressure and prevent leaks. Translucent materials allow oil levels to be easily monitored. 10 mm (3/8") hose barbs come standard for supply and return hoses.

Pump Handles

Standard round-tipped handles are made of knurled 6061-T6 hardcoat-anodized aluminum and fit standard HYPM1 and HYMP2 pumps. Grand Prix versions are available in carbon fiber. An optional square-tipped style allows the handle to be rocked 5 degrees laterally from the pumping direction to store against the cockpit wall.

VENTED RESERVOIRS

PRESSURIZED RESERVOIRS

		Maxir	Maximum		il		Maximum dimensions						
Part		capa	city	capa	city	Hei	ight	Wi	idth	De	pth	We	ight
No.	Description	gal	L	gal	L	in	mm	in	mm	in	mm	lb	kg
HYRPC02	Pressurized composite reservoir	0.5	2	0.32	1.2	12.2	310	6.3	160	5.8	148	2.1	0.97
HYRPC04	Pressurized composite reservoir	1.1	4	0.63	2.4	17.9	455	6.3	160	5.8	148	2.8	1.28
HYRPC08	Pressurized composite reservoir	2.1	8	1.2	4.7	31.2	793	6.3	160	5.8	148	4.3	1.96
HYRPC10	Pressurized composite reservoir	2.6	10	1.6	5.9	37.2	946	6.3	160	5.8	148	5.2	2.34
HYRVP02	Vented blow-molded reservoir	0.5	2	0.4	1.5	7.1	181	8.7	220	4.1	105	0.8	0.36
HYRVP04	Vented blow-molded reservoir	1.1	4	0.8	3	11.7	298	8.7	220	4.1	105	1.2	0.55

Additional sizes available. Contact Harken.

PRESSURIZED RESERVOIRS

Pump Handles

		Ø		Len	gth	Weight	
Part No.	Description	in	mm	in	mm	lb	kg
HYPMH6600	Pump handle 600 mm/aluminum	1 1/4	32	23 5/8	600	1.2	0.56
HYPMH6800	Pump handle 800 mm/aluminum	1 1/4	32	31 1/2	800	1.5	0.7
HYPMHC800	Pump handle 800 mm/carbon fiber	1 1/4	32	31 1/2	800	1.0	0.45
HYPMHC800S	Pump handle 800 mm/carbon fiber/square tip	1 1/4	32	31 1/2	800	1.0	0.45
HYPMHC1000	Pump handle 1000 mm/carbon fiber	1 1/4	32	39 3/8	1000	1.2	0.53
HYPMHC1000S	Pump handle 1000 mm/carbon fiber/square tip	1 1/4	32	39 3/8	1000	1.2	0.53

Hydraulic Accessories

Harken offers a complete range of high-quality kits and components for the professional installation, service, and maintenance of your hydraulic system.

Filters

Filtration is essential to the health and longevity of your hydraulic system. Harken recommends the 40-micron suction/return filter between the reservoir and the pump as well as an extremely fine 3-micron filter between the pump and the valves. The 40-micron filter has an anodized aluminum body with a removable, cleanable, and replaceable sintered bronze element. The high pressure 3-micron filter is made from electropolished 17-4 PH stainless steel or titanium. It has a replaceable paper element and can handle pressure up to 10,000 psi. -4SAE ports allow the high-pressure filter to accept any combination of fittings and adapters.

Pressure Transducers

Pressure transducers use the onboard computer to convert hydraulic pressures of up to 10,000 psi into tons or other load units. Standard lightweight versions and super lightweight Grand Prix versions are available. Contact Harken for availability and options.

Pressure Gauges

Pressure gauges, offered as an alternative to electronic transducers, can be mounted into the valve panel or plumbed remotely into a pressure line. Stainless steel 40 mm (1 1/2") cases are filled with glycerin to dampen needle movement.

Plumbing

Harken has a complete line of high-pressure and low-pressure plumbing for manual hydraulic systems. All high-pressure fittings and adapters are machined from stainless steel. Hoses can be sent to you assembled and preflushed.

Seal Kits

Seal kits are available for all valves, cylinders, and pumps. Kits include all normal wear items such as O-rings, seals, and nylon tip set screws.

Repair Kits

Repair kits are available for all valves, cylinders, and pumps. They include everything in the seal kit with the addition of select machined components that may require occasional replacement.

HAWE Tool

The HAWE tool is used for removing and reinstalling the check valves included in valve and pump repair kits.

Hvdraulic Oil

Our hydraulic oil was chosen specifically for Harken high-pressure hydraulic systems. Its moisture-resistant formula features unique anti-wear additives that inhibit corrosion and provide high levels of thermal and oxidation stability to enhance lubricant performance and extend equipment life.

HYOIL22QUART: one-quart bottle.

Filters

Part		Max pressure End fittings					
No.	Description	psi	bar	Port 1	Port 2	lb	g
HYFAP03S	High-pressure filter/stainless steel/3 micron	10000	689	-4 ORB female	-4 ORB female	.63	288
HYFAP03TF	High-pressure filter/titanium/3 micron	10000	689	-4 ORB female	-4 ORB female	.37	167
HYFAP03TM	High-pressure filter/titanium/3 micron	10000	689	-4 ORB female	-4 JIC/ORB male	.38	172
HYFAT40	Low-pressure filter/40 micron	250	17	3/8" (-6) barb	3/8" (-6) barb	.10	45
HYFAT40J6	Low-pressure filter/high-flow/40 micron	250	17	-6 JIC male	-6 JIC male	.17	75

Hydraulic Hose

Harken offers a range of hydraulic hoses for high- and low-pressure oil delivery. After assembly, all high-pressure hoses are flushed clean of contaminants before shipping. See standard range of hose and end fittings below. Contact Harken for any custom needs you may have.

High-Pressure Hose

The HYZHP520N-3, -4, and -6 are general purpose pressure hoses used for oil delivery to cylinders and other motor functions. They feature durable nylon tubing reinforced with high-strength aramid fiber and an abrasion-resistant polyurethane cover. Fittings sold separately.

Low-Pressure Hose

The HYZHT7212-6 is a tank line hose. The light, flexible hose is made of Nitrile rubber with braided neoprene reinforcement. Hose-barb fittings allow an easy-push connection.

High-pressure hose end fittings

Harken offers high pressure hose fittings in cadmium-plated steel or, for greater durability, stainless steel. See chart below for standard fittings. Harken stocks many other configurations of hose ends.

For complete assemblies including hoses, contact Harken.

Hoses

			Wor press	king sure*		mum radius	We	ight
Part No.	Description	- Size	psi	bar	in	mm	lb/ft	kg/m
HYZHP520N-3	3/16" High-pressure hose	-3	5000	345	1.5	38	0.05	0.07
HYZHP520N-4	1/4" High-pressure hose	-4	5000	345	2	51	0.07	0.1
HYZHP520N-6	3/8" High-pressure hose	-6	4000	276	2.5	64	0.08	0.13
HYZHT7212-6	3/8" Low-pressure hose	-6	300	21	3	76	0.12	0.18

^{*}Typical burst pressure is 4:1.

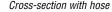
Nomex is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates. Kevlar is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.

High-Pressure Hose End Fittings

Part No.	Material	Description	Fits hose	End fitting
HYZSSJF4H3	HYDR FIT-SWV SS-4JICF TO -3HOSE PARKER 10655	Stainless steel	HYZHP520N-3	female -4 (1/4") JIC
HYZSSJF4H4	HYDR FIT-SWV SS-4JICF TO -4HOSE PARKER 10655	Stainless steel	HYZHP520N-4	female -4 (1/4") JIC
HYZSSJF6H6	HYDR FIT-SWV SS-6JICF TO -6HOSE PARKER 10655	Stainless steel	HYZHP520N-6	female -6 (3/8") JIC
HYZSCJF4H3	HYDR FIT-SWV STL-4JICF TO -3HOSE PARKER 10655	Steel/Cadmium plate	HYZHP520N-3	female -4 (1/4") JIC
HYZSCJF4H4	HYDR FIT-SWV STL-4JICF TO -4HOSE PARKER 10655	Steel/Cadmium plate	HYZHP520N-4	female -4 (1/4") JIC
HYZSCJF6H6	HYDR FIT-SWV STL-6JICF TO -6HOSE PARKER 10655	Steel/Cadmium plate	HYZHP520N-6	female -6 (3/8") JIC

Through-Deck Gland

The Harken Through-Deck Gland provides a waterproof passage for hydraulic hose. Unlike other glands, Harken's model can be easily installed by one person topside. The gland's doughnut-shaped base secures over a predrilled hole in the deck with high-strength bonding tape. The urethane seal and top cap is put on the hose before attaching the swage fitting. The swage fitting passes through the deck/base, and the top cap is threaded to the base for a watertight fit.


The through-Deck Gland comes in black hard coat-anodized 6061-T6 aluminum. It fits HYZHP520N 5 mm (3/16"), 6 mm (1/4"), and 10 mm (3/8") hose sizes.

For complete assemblies including hose contact Harken.

Part		Gland Ø	Max	Ho	ose Ø	He	ight	We	ight
No.	Description	in	mm	in	mm	in	mm	lb	kg
HYZD6-3	Through-Deck Gland	2.3	60	3/16	5	1	26	.2	0.11
HYZD6-4	Through-Deck Gland	2.3	60	1/4	6	1	26	.2	0.11
HYZD6-6	Through-Deck Gland	2.3	60	3/8	10	1	26	.2	0.11

Go to www.harken.com/hvdraulicaccessories for more detailed information.

Choosing Hydraulic Systems

1. Cylinders

Load and Pin Sizes: Cylinder size is determined by cylinder load and pin size. Stroke length is based on cylinder function. See page 232 to select cylinder. Double-pull, locking, and boom vang cylinders are also available. See charts for loads, pin sizes, and stroke lengths.

Alternate End Fittings: Choosing the correct end fittings for your cylinders is critical. See page 233 for end-fitting options.

2. Control Valves

Select valves based on sailing style and valve style, type, and functions. Choose between multifunction panel and individual valves, standard or Grand Prix styles. Single- or double-acting valves are based on cylinder type.

Individual Valve Assemblies: Individual valve assemblies are dependent on how the boat is sailed. Determine if there are multiple or single control locations. Choose valve, manifold configurations, and panel types. See page 240.

Multifunction Valve Panels and Single-function Panels: Choose plate materials. Single and multifunction panels come with a 2-speed pump, pump handle, and reservoir. See page 241.

Remote Dump Valves: Determine if there are remote dump valves required. Example: vang cylinders.

3. Pumps and Handles

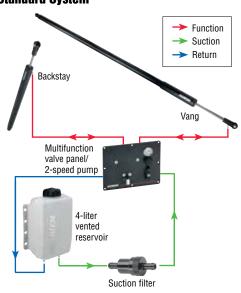
Individual valves require a separate pump. How many? Choice depends on oil volume, how fast oil must move, and pressure required. Select adequate handle. See pages 243-244.

4. Reservoirs

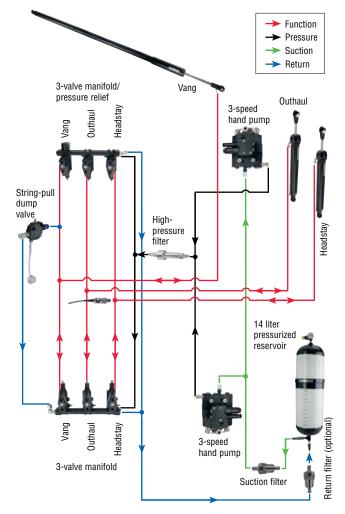
Reservoir Type: Reservoir type is determined by the amount of oil needed and pump height relative to the reservoir. Use a pressurized reservoir if it is mounted more than 1.5 m (5') vertically below the pump. Vented reservoirs are adequate under 1.5 m (5').

Reservoir Size: As a general rule, select reservoir size by adding up cylinder volumes and multiplying by 2.

5. Accessories


Filters: Harken highly recommends a high-pressure filter between the pump and valves to keep valves working at peak performance. Also required is a suction filter for the pump to prevent debris from entering the system.

Gauges: Remote analog gauges and digital transducers are available.


Fittings: Plumbing fittings, additional spares, and spare parts available. See page 245-246.

Hose: Harken offers hoses and fittings for both high- and low-pressure plumbing needs. Harken can also provide complete hose assembles to your specification. All high-pressure hose assemblies are flushed before shipping. See page 246.

Standard System

Grand Prix System

DC HYDRAULIC POWER SYSTEMS

When designing a powered system, we first gather information on the number of functions as well as flow and pressure requirements for each. Every powered system is different. Harken is committed to providing systems designed specifically to account for flow, pressure, and other performance requirements of each project. We also talk to the customer about how the boat will be used to assure the system will perform as expected.

Harken DC hydraulic systems power functions including cylinders, vangs, lifting keels, winches, furlers, windlasses, and small bow thrusters. The system is comprised of three main components:

• The power unit includes motors and pumps to deliver oil. We offer a variety of options for different flow and pressure needs. All power units include return filtration, motor temperature sensors, and tank level sensors.

• Valves direct and deliver oil to hydraulic functions. Our family of modular cartridge manifold valves stack together for an extremely flexible system. These zero-leak valves have flow and pressure controls as well as pressure relief.

 The electrical control box is the brain of the system. On-deck push button controls turn valves and pumps on/off. Our latest control boxes all include a small PLC controller to map inputs to outputs. Boxes come pre-wired. Simply plug M12 cables to connectors on the outside of the box.

We provide hands-on service for all Harken hydraulic power systems and we look forward to serving our customers

beyond their expectations. Please contact us with any of your hydraulic powered system needs. We will be happy to provide detailed specifications and a quote.

High-pressure, low-flow compact power units are perfect for powering cylinder functions.

High-flow, low-pressure power units

are ideal for powering winches, furlers, small windlasses, and thrusters.

Harken Materials & Properties

Aluminum

6061-T6: an aluminum alloy that has excellent corrosion resistance to air and salt water. It is an easily welded, tough alloy that responds well to anodizing.

7075-T6: the strongest aluminum alloy with strength comparable to many steels. Harken uses 7075-T6 in its Grand Prix cylinders which are built to handle extremely high loads at minimal weight. A vigorous maintenance schedule is required when using this alloy, because corrosion resistance is lower than 6061-T6. Available in hardcoat or clear-anodized finishes.

Bearing properties are functions of contact area, material type, bearing cages, and whether the bearing rolls or slides.

Ball bearings: very low-friction; low/medium-load capacity.

Roller bearings: low-friction; high-load capacity.

Sleeve bearings: medium/high-friction; extremely high-load capacity.

Materials

Stainless steel is stronger than Torlon® thermoplastic and Torlon is stronger than Delrin® acetal resin. Because stainless is heavier and usually higher maintenance, Torlon is used in most high-load applications.

Contact Area

More contact between the bearing and the race increases friction, but also increases load capacity. Balls are loaded on small points, cylindrical rollers are loaded along their length, and sleeve bearings are curved around the shaft so a large portion is in contact. Unlike balls and cylinders, sleeves are not prone to being flattened by extreme or static loads because they already conform to the curvature of the shaft.

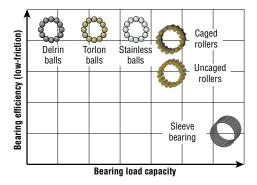
Motion (rolling, caged rolling, or sliding)

Sliding bearings (known as sleeve, plain, full-contact, bushing, or journal bearings) are very high strength, but have nothing to reduce friction between contact areas. At most, they have a low-friction sleeve between the surfaces. Rollers and balls avoid almost all of this friction because they do not slide against the race, though they can come in contact with each other. Caged roller bearings are separated from each other to avoid this.

Caged Bearings

Caged bearings are roller bearings held in a cage that keeps them separated from each other and parallel to reduce friction. Caged bearings are used in winches and Black Magic blocks.

Captive Bearings


Captive bearings are ball bearings that are contained so they won't spill during product maintenance. Black Magic blocks have ball bearings held captive by the lip of the sheave. CB traveler cars feature ball bearings held captive by a wire guide.

Carbo

Carbo Air blocks feature lightweight, fiber-reinforced, nylon-resin sideplates with a 60% higher MWL than stainless-reinforced Classic blocks. Lightweight fiber-reinforced Carbo-Cams are ideal for racing where weight is critical. The Carbo name comes from an additive that gives blocks their color and UV-resistance.

Carbon Black

Carbon black is a color additive used in black Delrin ball bearings, block sheaves. and sideplates to protect against UV exposure.

Roller bearing contact area

Ball bearing contact area

Caged rollers

Uncaged rollers

CB traveler

Black Magic sheave

Carbo-Cam cleat

For complete listing, see www.harken.com/glossary

Harken Materials & Properties

Clear-Anodized

Clear aluminum anodizing is an electrochemical process that produces a corrosion-resistant finish. It also hardens the surface, making components less prone to scratches and dents. It is "clear" because the protective layer isn't thick enough to change the color of the component (though dye can be added). More rigorous anodizing, such as hardcoat, can give components a black or colored hue.

Delrin® Acetal Resin

Black (white in older blocks) material which excels in small boat and low to moderate-load applications. Delrin® acetal resin is used for bearings, sheaves, and sideplates.

Hardcoat-Anodized

Hardcoat aluminum anodizing is an electrochemical process that produces a corrosion-resistant finish with hardness characteristics second only to diamonds. Harken's hardcoating process is twice as thick as black anodizing to provide extra protection against scratches, dents, superficial deformation, and corrosion.

Hard Lube-Anodized

Hard Lube-anodized aluminum includes all the corrosion-resistant properties of hardcoat-anodized aluminum with the additional benefits of a PTFE coating for a smoother surface and reduced friction.

Nviatron® Nvion

Durable, lightweight composite material that has high mechanical strength and stiffness, resists static electricity, and has excellent wear resistance.

PTFE-Coated

PTFE-coating, along with anodizing, protects aluminum against corrosion by sealing the surface from moisture. It also minimizes friction and gives the component better wear resistance.

Stainless Steel

17-4 PH Stainless Steel: this alloy is used in gears because it is hardenable to extremely high strengths. 17-4 PH is more corrosion-resistant than any other standard hardenable stainless steel.

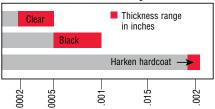
316 Stainless Steel: this is a nonhardenable alloy with high corrosion resistance in freshwater and saltwater.

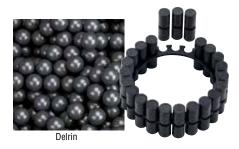
XM-19 Stainless Steel: this stainless is highly alloyed, with very high mechanical strength and superior corrosion resistance. Rods and pins in Harken cylinders are made of XM-19 stainless.

Titanium

This lightweight, hard metal has the highest strength-to-weight ratio of any metal. Its corrosion rate is so low that after 4000 years in seawater, corrosion would only have penetrated to the thickness of a thin sheet of paper. Harken uses titanium rollers in V blocks to handle bearing loads.

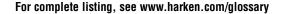
Torlon® Thermoplastic


Exceptionally strong crush/impact-resistant bearing material that withstands heavy long-term use and shock loading. Most Harken hardware that sees extreme loads uses greenish-brown Torlon® bearings.


UV-Stabilized

UV light photo-degrades composites by breaking their chemical bonds, leaving them weak, brittle, and discolored. This is common in equipment with white bearings. All Harken composites and bearings are naturally UV-resistant or use stabilizers like carbon black.

6061-T6 Aluminum Anodizing Thickness



Not UV-stabilized

UV-stabilized

Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates. Nylatron is a registered trademark of Quadrant EPP USA Inc. Torlon is a registered trademark of Solvay Advanced Polymers, L.L.C.

Worldwide Limited Warranty

COVERAGE. HARKEN warrants that each HARKEN product, when properly used and maintained, will be free from defects in material and workmanship from the date of receipt of the product by the final customer. HARKEN products are covered by two different kinds of warranties, on the basis of the purchaser and use made of them.

1. The Private Customer Warranty
2. The Professional Customer Warranty

2. The Professional Customer Warranty
THE LIMITED PRIVATE CUSTOMER WARRANTY. This limited warranty applies to all Harken products purchased for final use by private individuals only and installed on boats used exclusively for recreational purposes. Harken products installed on boats used for any other purpose or by any other entity are covered by the limited PROFESSIONAL CUSTOMER WARRANTY. The Owner's sole and exclusive remedy under this limited PRIVATE CUSTOMER WARRANTY for original defects in materials or workmanship of a HARKEN product shall be the repair or replacement, in HARKEN's sole discretion, of the defective part or component, at no charge to the owner of the product.

THE LIMITED PROFESSIONAL CUSTOMER WARRANTY. This limited warranty applies to all Harken products purchased for final use by or on behalf of any entity other than a private individual (such as by corporations, partnerships, competitive race groups, etc.) or installed on boats used for any purpose other than recreational use, such as for hire, charter or other professional or commercial events or activities. Such Professional Customers may include, but are not limited to, America's Cup Syndicates, international competitive syndicates, racers in transoceanic and globe-circling events, one-design racers with boats 40 feet and up racing in major competitive and international competition.

The Owner's sole and exclusive remedy under this limited PROFESSIONAL CUSTOMER WARRANTY for original defects in materials or workmanship of a HARKEN product shall be the repair or replacement, in HARKEN's sole discretion, of the defective part or component, in accordance with the terms of this warranty.

WARRANTOR. For products originally sold in the Unites States, the limited warranty for the products is supplied by HARKEN, INC.. For products originally sold in the European Union, the limited warranty for the products is supplied by the dealer who sold the product through the Harken Distributors in that country. For products originally sold in the rest of the World, the limited warranty for the products is supplied directly by the Harken Distributors in that country. When "HARKEN" is mentioned throughout this Limited Warranty, it refers to the entity as defined in this paragraph.

OWNER – NON-TRANSFERABLE WARRANTY. This warranty is made by HARKEN with only the original purchaser of the product and does not extend to any third parties. The rights of the original purchaser under this warranty may not be assigned or otherwise transferred to any third party.

WARRANTY TERM. The limited PRIVATE CUSTOMER WARRANTY covers any original defects in material or workmanship manifested within five (5) years of the date of receipt of the product by the final customer. However, the warranty terms under the limited PRIVATE CUSTOMER WARRANTY for the following products are as indicated below by the date

- Jib Reefing and Furling systems are warranted for seven (7) years.
 Hydraulic and Electric Furling systems are warranted for five (5) years.
 Electric furling motor, switches, control boxes, and breakers are warranted for two (2) years.
- Reflex furler for asymmetric and code zero sails, associated adapters, cable terminals/clamps, and fairlead kits, are warranted for three (3) years. Reflex torsion cable is warranted for one (1) year.
- 3. Carbo Racing Foils are warranted for three (3) years.

of receipt of the product by the final customer:

- 4. Winches and handles, cylinders, valves, pumps, reservoirs, control panels are warranted for three (3) years. Electric/hydraulic winch motors, captive reel winches, CLR mooring winches, hydraulic power units, switches, control boxes, and breakers are warranted for two (2) years.
- Custom products, pedestals, gearboxes, push buttons, drive shafts, carbon fiber products, and/or high performance applications of standard catalog products for extraordinary use applications are warranted for two (2) years.
- Harken gloves, sunglasses, and related accessories are warranted for two (2) years from date of purchase. Warranty excludes normal wear and tear.

The limited **PROFESSIONAL CUSTOMER WARRANTY** covers any original defects in material or workmanship manifested within 12 months of the date of receipt of the product by the final customer.

NOT COVERED. Neither the limited PRIVATE CUSTOMER WARRANTY nor the limited PROFESSIONAL CUSTOMER WARRANTY applies to, nor shall HARKEN

have any liability or responsibility for, damages or expenses relating to defects caused by misuse, abuse, failure to install, use, maintain, or store the HARKEN product as specified in the warranty booklet, service booklet, manuals, catalogue, or other literature available from HARKEN.

Neither the limited PRIVATE CUSTOMER WARRANTY nor the limited PROFESSIONAL CUSTOMER WARRANTY applies to, and neither HARKEN shall have any liability or responsibility in respect of, damages or expenses relating to:

- defects in material or workmanship that did not exist when the product was first delivered;
- defects in material or workmanship that are manifested outside the warranty period;
- defects which are not reported to HARKEN within sixty (60) days of discovery;
- a product that has been altered or modified from factory specifications;
- damage or deterioration of cosmetic surface finishes, including cracking, crazing, discoloration, or fading;
- accidents, misuse, abuse, abnormal use, improper use, lack of reasonable or proper maintenance or storage;
- installation, wiring, service, or repairs improperly performed or replacement parts or accessories not conforming to HARKEN's specifications;
- use exceeding the recommended and permitted limits or loads of the product and/or the vessel on which the product is installed;
- normal wear or deterioration occasioned by the use of the product or its exposure to the elements;
- besides HARKEN's Hoister products used to store watercraft and bicycles, any use outside, other than or besides normal sailing or sailboat applications;
- ropes, lines, LOUP® soft attachments, buckles, and webbing;
- clear coat finishes on carbon fiber;
- loss of time, loss of use, inconvenience, travel expense, costs related to
 procuring any substitute boat, transportation costs, towing costs, any
 incidental or consequential damages arising out of the non-use of the boat,
 or compensation for inconvenience or loss of use while the boat is being
 repaired or otherwise not available, or other matters not specifically
 covered hereunder;
- the costs to remove, disassemble, or re-install the product;
- the costs or expenses associated with transporting the product to and from HARKEN or a HARKEN dealer
- hauling out, storage, and relaunching of the boat on which the product has been installed, even where this is necessary to carry out the warranty service.
 The limited PROFESSIONAL CUSTOMER WARRANTY does not cover, nor shall HARKEN have any liability or responsibility in respect of, damages or expenses relating to, the following products and/or components:
- pawls and pawl springs in winches;
- · components and gears in titanium;
- · washers and spacers;
- · winch drum grip;
- ball bearings, roller bearings, thrust bearings;
- · winch handles.

PROCEDURE. In the event of a defect covered by this limited warranty, the Owner shall contact one of HARKEN's worldwide Distributors (there is a list of them on the www.harken.com site). If the product was originally sold in European Union the Owner shall contact the dealer that sold the product. To obtain warranty service for or replacement of your HARKEN product, your specific and detailed claim must be reported to and received by HARKEN, in writing, in accordance with the terms of this warranty and within the applicable warranty period. Also provide your name, address, phone number, original sales receipt, a description of the application of the product, and an explanation of the defect and conditions under which the product was used. If the examination of the product and the warranty claim reveals that the defect is not covered by this warranty, you will be contacted and advised of the cost of repair of your product. If you accept this estimate, the product will be repaired outside of this warranty.

DAMAGES OR OTHER COSTS. Except as expressly provided by this warranty, HARKEN SHALL NOT BE RESPONSIBLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES OR OTHER COSTS, WHETHER THE CLAIM IS BASED IN CONTRACT, TORT, OR OTHERWISE, including but not limited to any costs, taxes, fees, levies, or other expenses imposed by any location in which the product was originally sold. The foregoing statements of warranty are exclusive and in lieu of all other remedies. Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, so this limitation or exclusion may not apply to you.

Loup is a registered trademark of Yale Cordage.

Worldwide Limited Warranty

DISCLAIMER. ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND ALL IMPLIED WARRANTIES ARISING FROM A COURSE OF DEALING, USAGE OF TRADE, BY STATUTE OR OTHERWISE, IS HEREBY STRICTLY LIMITED TO THE TERM OF THIS WRITTEN LIMITED WARRANTY. This Agreement shall be the sole and exclusive remedy available to the Owner with respect to this product. In the event of any alleged breach of any warranty or any legal action brought by the purchaser based on alleged negligence or other tortious conduct by HARKEN, the Owner's sole and exclusive remedy will be repair or replacement of defective materials as stated above. No dealer and no other agent of HARKEN is authorized to modify, extend, or enlarge this warranty.

APPLICABLE LAW. This warranty is governed by the laws of the State of Wisconsin for all products originally sold outside European Union. This warranty is governed by the laws of the Member State of the European Union where the product was originally sold. The exclusive jurisdiction and venue for any court action commenced by you under or relating to this limited warranty or any implied warranty(ies) shall be decided in the Courts of Waukesha County, Wisconsin or in the competent European Union State Member Court if the product was originally sold in European Union.

In the event HARKEN prevails in any court action, the claimant shall reimburse HARKEN for the expenses, including attorney fees and expenses of litigation, reasonably incurred by HARKEN in defending against such claim.

OTHER RIGHTS. Claimant's acceptance of delivery of the warranted HARKEN product constitutes acceptance of the terms of this limited warranty. This warranty gives specific legal rights, and claimant may also have other rights under the laws of the jurisdiction involved.

ENTIRE AGREEMENT. This document contains the entire warranty given by HARKEN in respect of your product and supersedes any and all oral or express warranties, statements, or undertakings that may previously have been made. Any and all warranties not contained in this warranty are specifically excluded. There are no terms, promises, conditions, or warranties regarding your product other than those contained herein. HARKEN specifically does not authorize any person to extend the time or scope of this warranty or to create or assume for HARKEN any other obligation or liability with respect to HARKEN products.

June 2008/112616.1

General Warnings and Instructions

Sailing is an exciting sport that can provide hours of enjoyment for you, your family, and friends. However, there are risks inherent in the sport, as well as with the equipment involved, that must be respected in order to avoid an accident, damage to your vessel, personal injury, or death.

WARNINGS AND INSTRUCTIONS. You must carefully read, understand, and follow all of the warnings and instructions provided by Harken in order to avoid an accident. These warnings and instructions can be found on the equipment, in its packaging, in our brochures, on our website, or through our customer service department.

HYDRAULIC EQUIPMENT WARNING. Pressurized hydraulic cylinders can be dangerous and if handled improperly may explode, possibly causing an accident, damage to your vessel, personal injury or death. Cylinders should only be serviced by a thoroughly trained and equipped hydraulic technician following the instructions in the manual.

TRAINING AND EXPERIENCE. Even though Harken equipment appears simple and easy to operate (as intended by our design), our equipment should never be used unless you have a sufficient level of training and experience in sailing in general and with the equipment in particular. The amount of training and experience depends on a number of factors, including the size and type of your vessel, the weather conditions, and the task you are trying to complete. If you have any doubt whatsoever about your training or experience, please do not use the equipment. Please contact Harken or seek additional training.

AVOID ACCIDENT & INJURY. Regardless of your skill level, in order to avoid an accident, damage to your vessel, personal injury, or death:

1. Loads on hardware can be significant, and shock loading from heavy winds or seas can quickly multiply that load to extremely high levels. Maximum line diameter is a guide to sheave groove size and not intended to provide the maximum working load of the block. All persons selecting, installing, or maintaining Harken gear must be aware and cautious of such loads.

Select appropriate Harken hardware by using the loading formulas and charts provided in the Harken catalog or online at www.harken.com. Always confirm your selection with a rigging professional or contact Harken directly.

 Never, under any circumstances, exceed the capacity or Maximum Working Load (MWL) of any piece of equipment. The maximum working load may be found in our catalog, on our website, or through our technical service department. Loads above the MWL can cause the equipment to fail suddenly and unexpectedly. The Breaking Load (BL) is the load at which a product is likely to fail. It is much higher than the highest load a product should ever experience, and should not, under any circumstances, ever be considered in selecting equipment. It is published for informational purposes only.

- 3. Harken hardware and winches shown in the Harken catalog and the harken.com website are designed and engineered for use on sailing boats for normal sailboat applications for rigging. Do not use Harken equipment for human suspension unless product is specifically certified and labeled for such use. Aloft rigging and maintenance must be left to rigging professionals only. For non-sailing applications consult the HarkenIndustrial.com website and consult with experts at Harken regarding product certification prior to using for human suspension.
- 4. Keep fingers, hands, hair, loose clothing, gloves, and tools away from moving parts.
- 5. If you are securing any equipment to the vessel with screws or other fasteners, be sure you are installing the screw into solid structure, or that you use anchor bolts, and that the attachment is sufficient to hold the anticipated load. Otherwise, the screw could become loose over time, or otherwise fail unexpectedly, resulting in an accident.
- 6. NYLOK® nuts must not be used after being removed three times. When you replace shackles and fasteners, use the correct Harken parts to maintain the proper strength.
- 7. Always have all components of your vessel, down to the smallest pulleys, inspected for wear, corrosion, or deterioration at least yearly, and replace as necessary.
- 8. Before manipulating any piece of equipment, be sure that all persons and objects are clear of the path of movement of all reacting components.
- 9. As part of your maintenance procedures and to keep your equipment in optimum working order, frequently flush it with fresh water.
- 10. Always wear a personal flotation device and/or harness while on board any vessel, and especially while manipulating equipment.
- 11. Always be sure all safety equipment and electronics are in good working order before you set out on your journey.
- 12. For general boating safety information, visit the maritime organization in your sailing destination country (such as the United States Coast Guard at www.uscgboating.org).

Nylok is a registered trademark of Nylok Corporation.

Harken Trademarks

Following is a non-exhaustive list of Harken, Inc. trademarks and registered trademarks in the U.S. and other countries and the corresponding product.

The list is updated from time to time. The absence of a trademark or associated product from this list does not constitute a waiver of Harken, Inc. trademark or other intellectual property right concerning that word or logo.

Registered Trademarks	Product
Air®	block, runner block, foil, sheave, winch
Black Magic®	block, Air® block, glove
Cam-Matic®	cleat
Carbo®	block, racing foil, ratchet block, Ratchamatic® block, fiddle block
Carbo-Cam®	cleat
Harken®	blocks, ratchet blocks, sheaves, cleats, fairleads, shackles, padeyes, mainsheet and genoa lead traveler cars and track, batten cars and track, furling systems, foils for raising and lowering racing sails, winches, hydraulic systems including hydraulic cylinders, valves, lines, manifolds, transmissions, and pumps; manual hoists; rope ascenders and descenders; elevating rope work platforms and life-saving safety mechanisms; covers for boats and equipment; duffel bags, sport bags; gloves, shirts, headwear; after-sun lotions, lip balms, sunscreen preparations
Hexaratchet®	block, sheave
PowerSeat®	ascender
Radial Line®	winch
Ratchamatic®	block

Trademarks	Product
Bullet™	block
Crossbow™	pivoting self-tacking jib traveler, traveler
Element™	block, shackle block
FlatWinder™	block, powered block
Fly™	block, soft-attach block
Performa™	winch
Protexit™	block, through-deck block
Reflex™	furling, top-down furling
Rewind™	winch, Radial Line® winch
T2™	soft-attach block, block, loop block
UniPower™	winch, Radial Line® winch
V TM	block, soft-attach block

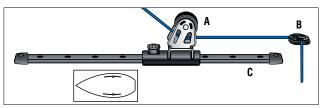
Maintenance

Harken equipment is designed for minimal maintenance. However, some upkeep is required to give the best service and comply with the Harken limited warranty. Harken installation manuals are available at no charge online at www.harken.com or by contacting a Harken dealer.

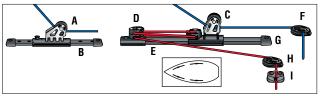
Always flush frequently with fresh water and periodically inspect all products for damage. Do not let deck hardware come in contact with teak cleaner or other caustic solutions as this causes discoloration and damage to the finish.

Pro	Product	General Information	Inspection	Cleaning	Lubrication	Fasteners
Small Boat and Midrange Blocks	at and Blocks	Tape cotter rings to prevent snagging. Do not leave heavy loads on blocks when not in use as this may slightly deform the bearings. Normally bearings will return to their proper shape after rotation, but an initial resistance to rolling may be felt.	1	5		11
Big Boat Blocks		Big Boat bearings are resistant to deformation, but we recommend releasing heavy loads on any hardware when not in use.	-	4 Black Magic Air blocks disassembled, solution on rollers		12
Cams				4 Apply to bearings		11 On cam screws
Travelers and Battcars	s		1	4 Apply to bearings	7 On balls 8 Slider cars only	11 On bolts 13
Furling		Refer to the owner's manual for detailed maintenance instructions.	2	4 Apply to bearings		14 On all foil connector screws
Winches		Refer to the owner's manual for detailed maintenance instructions. Over application of grease can cause salt and water deposits to become trapped in the winch. Clear drain ports of sealants or grease. Lubricate pawls with Harken Pawl Oil. Do not grease pawls.	က	4 Plastic parts4 Winch top6 Metal parts	9 On gears 10 On pawl	12 On socket bolt 13
1	Inspect fro Inspect: la	nspect frequently: shackles and shackle posts for signs of corrosion, cracks, or elongation. nspect: lashings and loops for UV damage, wear, or chafe. When replacing loops, lashings, or shackles, use Harken parts to maintain the proper strength.	des, use Harken parts	to maintain the proper strength.		
2	Inspect fr	Inspect frequently: wire terminals, turnbuckle components, toggles, shackles, clevis and cotter pins below and inside drum assembly for signs of loosening, corrosion, or cracks.	below and inside dru	m assembly for signs of loosening, corrosion, or	cracks.	
က	Check for	Check for wear and corrosion: Check pawls and springs, bearings, gears, and spindles.				
4	Clean: Ke Spin shea	Clean: Keep your equipment clean and free-running by frequently flushing with fresh water. Periodically clean with mild detergent and water solution. Spin sheaves, rotate cams, and roll cars back and forth to distribute soap solution evenly.	ally clean with mild d	etergent and water solution.		
വ	Clean: wit	Clean: with Scotch Brite® pad on Classic block sideplate and stainless steel strap.				
9	Degrease	Degrease: Remove grease with degreaser. Harken recommends environmentally friendly citrus degreasers.	asers.			
7	Condition	Condition: Use only a single drop of McLube OneDrop™ ball bearing conditioner. Too much oil attracts dirt.	ts dirt.			
œ	Lubricate	Lubricate: Dry Iubricants such as McLube® Sailkote, dry PTFE, and dry silicon sprays which will not attract dirt may be used on slider cars.	attract dirt may be us	ed on slider cars.		
6	Grease lig	Grease lightly: with Harken winch grease.				
2	Lubricate	Lubricate: winch pawls with a drop of Harken Pawl Oil. Do not grease winch pawls.				
=	Adhesive:	Adhesive: Blue Loctite®. Temporary adhesive. Can be removed without heating.				
12	Anti-seize	Anti-seize: Coat stainless fasteners that pass through aluminum blocks with an antiseize compound such as Tef-Gel®.	such as Tef-Gel®.			
13	Replace:	Replace: lock nuts after the third removal.				
14	Adhesive:	Adhesive: Red Loctite®. Semi-permanent adhesive. Can be removed with heat. Electric heat gun will not raise temperature enough to break adhesive seal	not raise temperature	enough to break adhesive seal.		

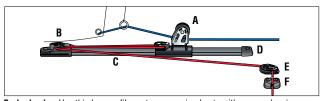
MCLube is a registered trademark of McGee Industries, Inc. Locititie is a registered trademark of Henkel AG & Company KGaA. Scotch Brite is a registered trademark of MCGee Industries, Inc. Locititie is a registered trademark of Ultra Safety Systems, Inc.

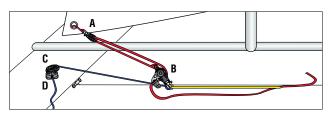

Genoa Lead Cars

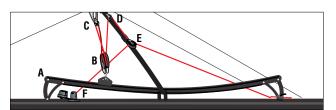
Part numbers represent hardware most commonly used.


Typical boat length:

Small Boat: 6.7 - 8.5 m (22 - 28') Midrange: 8.8 - 10.4 m (29 - 34') Big Boat: 10.7 - 12.8 m (35 - 42')


Diagram		Small Boat	Midrange	Big Boat
Ref.	Description	Part No.	Part No.	Part No.
Pinstop) Slider			
A	Lead car	G226S	G276S	G326S
В	Cheek	6237	6267	6294
C	Track	2751	R27	R32
Multi-T	rack			
A	Lead car	G226S	G276S	G326S
В	Track	2751	R27	R32
C	Lead car	G222B	G273B	G323B
D	End control	2740	E2750	E3250
E	Track	2720	R27	R32
F	Footblock	6267	3220	3234
G	Endstop	E2200	E2700	E3200
Н	Cheek	350	2644	6106
ı	Cam cleat	365	150	280
Barbar	hauler			
Α	Lead car	G2227B	G2737B	G3247B
В	End control	2740	1632	3169
C	Track	2720	R27	R32
D	Endstop	E2200	E2700	E3200
Е	Cheek	350	2644	6237
F	Cam cleat	365	150	150
Beacho	at Jib Controls			
	Multihulls	2.4 - 4.3 m (8 - 14')	4.6 - 6.4 m (15 - 21')	_
Α	Single	348	2636	_
В	Single	2611	2628	
C	Cheek	350	2644	_
D	Cam cleat	468	150	_
Crossb	ow			
Α	Crossbow	2758.1.1M.50	_	_
В	Single	2149	_	_
C	Single	404	_	_
D	Cheek	416	_	_
Е	Single	2698	_	_
F	Cam Base	240	_	_


Pinstop Slider: A pinstop slider car on ball bearing track is recommended for cruising boats that might upgrade to adjustable ball bearing cars.


Multi-Track: Use an adjustable car for the #1 and #2 genoas. Use a pinstop car for the #3 and #4 jibs. Adjust the forward car with a pinstop slider.

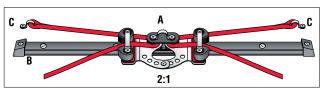
Barbarhauler: Use this low-profile system on racing boats with nonoverlapping jibs like the Farr® 40 and One Design 35. An inhaul is used to control slot size.

Beachcat Jib Controls: This jib traveler is used to haul the jib sheet block outboard for slot adjustment on multihulls up to 6.4 m (21').

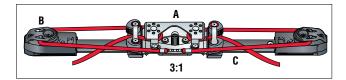
 $\mbox{\it Crossbow}$: The Crossbow is a self-tacking jib system designed for high-performance dinghies, skiffs, and catamarans under 6 m (20').

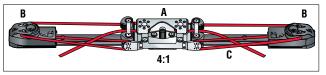
Traveler

Part numbers represent hardware most commonly used.

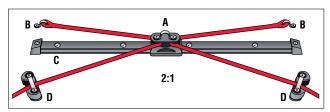

Standard boat length*:

Small Boat: 6.7 - 8.5 m (22 - 28') Midrange: 8.8 - 10.4 m (29 - 34') Big Boat: 10.7 - 12.8 m (35 - 42')

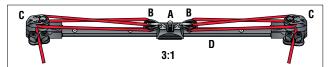

*Refer to **Ordering Mainsail Travelers** for in-depth

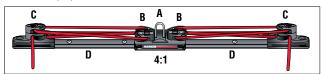

specifications by boat type.

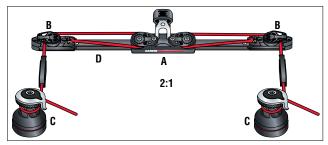
Diagrar Ref.	n Description	Small Boat Part No.	Midrange Part No.	Big Boat Part No.
	am on Car	Tarrino.	Tarrivo.	T dit No.
2.1 Uc	Traveler	2734		
B	Track	2720		_
C		073		
	Eyestrap indward Shee			<u> </u>
3:1 W	illuwaru Sliet		4005	
Α	Traveler	2745	1635 1636	_
	Food control	2746		_
B C	End control	2740	1631	_
<u> </u>	Track	2720	R27	_
	indward Shee	ting		
A	Traveler		1635	3177
В	End control		1631	3168
C	Track		R27	R32
2:1 Re	emote Cleat			
A	Traveler	2728	_	_
В	Eyestrap	137		
C	Track	2720	_	<u> </u>
D	Cam cleat	150	_	_
Stand	ard 3:1			
Α	Traveler	2731	T2731B	T3231B
В	Control block	348	_	_
C	End control	2743	E2756	E3256
D	Track	2720	R27	R32
Stand	ard 4:1			
Α	Traveler	2727	T2742B	T3242B
В	Control block	342	_	_
C	End control	2743	E2756	E3256
D	Track	2720	R27	R32
2:1 w	ith Dedicated	Winch		
Α.	Traveler	_		T3222B.HL
В	End control	_		E3230.HL
C	Winch			46.2STA
D	Track		_	R32
	HUUN			TIUL



2:1 Cam on Car: This system features cleats on adjustable arms that can be angled. On flush-deck boats, face cleats down the length of the track. On boats with seat backs, angle the cleats forward or aft.




Windward Sheeting: The windward sheeting traveler lets crew pull the car above the centerline without releasing the leeward control line. Tack and the car stays in the same position, ready to be pulled to the new windward side.


2:1 Remote Cleat: Use this 2:1 system on flush-deck boats like the J/24 where crew sit outboard of the traveler and loads are nearly vertical.

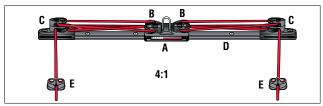
Standard 3:1: This system, with cleats on the track, is used on boats under 10.7 m (35°).

Standard 4:1: This 4:1 system is used on moderately-sized cruising and racing boats. Control blocks and cleats mount on track ends.

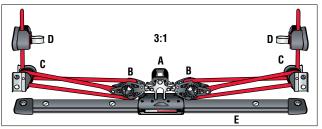
2:1 with Dedicated Winch: Install this system on big boats when winches are used to adjust the traveler.

Traveler

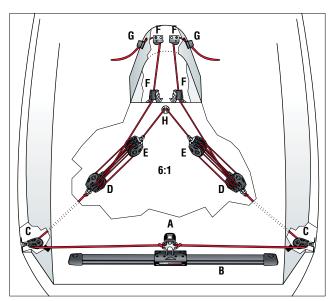
Part numbers represent hardware most commonly used.

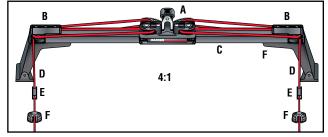

Standard boat length*:

Small Boat: 6.7 - 8.5 m (22 - 28') Midrange: 8.8 - 10.4 m (29 - 34') Big Boat: 10.7 - 12.8 m (35 - 42')


*Refer to **Ordering Mainsail Travelers** for in-depth

specifications by boat type.

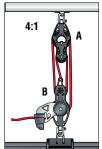

Diagram Ref.	Description	Small Boat Part No.	Midrange Part No.	Big Boat Part No.	
	note Cleat	Tart No.	Tait No.	Tait No.	
A. 1 11011	Traveler	2727	T2742B	T3242B	
B	Control block	342	12/420		
C	End control	2742	E2750	E3250	
D	Track	2720	R27	R32	
E	Cam cleat	150	150	150	
-	ouri olout	_	365	_	
3·1 Ren	note Cleat		000		
Α	Traveler	2727	T2703B	T3203B	
В	Control block	341	2637	2601	
C	Upright block	220	220	223	
D	Cam cleat	150	150	150	
		_	365	_	
E	Track	2720	R27	R32	
Underd	eck Traveler Con	itrol			
Α	Traveler	_	_	T3203B.HL	
В	Track	_	_	R32	
С	Single	_		3215	
D	Triple	_	_	2605	
Е	Triple	_	_	2604	
F	Upright block	_	_	222	
G	Cam cleat	_	_	150	
Н	Padeye	_	_	627	
4:1 Dodger Block					
Α	Traveler	_	_	T3242B	
В	End control	_	_	E3250HB	
C	Track	_	_	R32HB	
D	Track riser	_	_	1849	
E	Halyard lead block	_	_	1986	
F	Cam cleat	_	_	458	


4:1 Remote Cleat: If the traveler is mounted ahead of the companionway, place the cleats at the aft-edge of the cabin house.

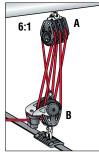
3:1 Remote Cleat: When the crew sits above the traveler, lead control lines up the cockpit sides to a convenient cleat on the coaming.

Underdeck Traveler Control: Racing boats often keep decks clean by running the traveler tackle belowdeck. This system has a 6:1 purchase that exits at a central control pod forward of the wheel or tiller, which allows the mainsheet trimmer to easily adjust the traveler. Popular on boats like the Farr® 40.

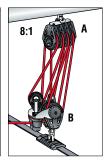
4:1 Dodger: This system works well with a dodger.


Mainsheet

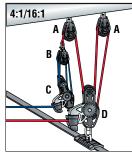
Part numbers represent hardware most commonly used.

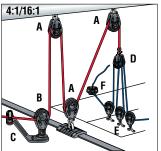

Typical boat length:

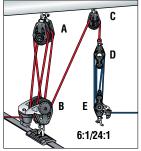
Small Boat: 6.7 - 8.5 m (22 - 28') Midrange: 8.8 - 10.4 m (29 - 34') Big Boat: 10.7 - 12.8 m (35 - 42')

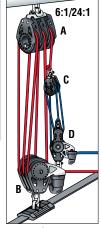

Diagram Ref.	Description	Small Boat Part No.	Midrange Part No.	Big Boat Part No.	
4:1 Fidd	Description	Part No.	Part No.	Part No.	
	-	0004	0000	4550	
A	Fiddle	2621	2690	1559	
B C:1 Page	Fiddle	2676	2697	1566	
	ed Right Ang	-			
A	Triple	2604	2664	1546	
В	Triple	2141	2686	1556	
8:1 Bead	encat	0.4.4.2	46.6	64.0-	
	Multihulls	2.4 - 4.3 m	4.6 - 6 m	6.4 - 9 m	
	0 1	(8 - 14')	(15 - 20')	(21 - 30')	
A	Quad	2654	2631	2677	
B full Orania	Triple	2619	2632	2687	
4:1 Swiv		0000	0000	4540	
A	Single	2600	2660	1540	
В	Single	2601	2661	1541	
C	Single	2135	2670	1549	
D	Cam base	205	144	1574	
	Gross/Fine				
A	Single	2636	2600	2660	
В	Double	381	2642	2602	
C	Fiddle	2658	2676	2697	
D	Fiddle	2675	2696	1565	
4:1/16:1 Double-ended Fine Tune					
A	Single	2636	2600	2660	
В	Single	2135	2135	1549	
C	Cam base	205	144	1574	
D	Double	342	2638	2602	
E	Single	349	2652	2600	
F	Cam cleat	471	471	150	
6:1/24:1 Gross/Fine					
A	Double	2638	2602	2662	
В	Triple	2647	2629	1555	
C	Single	2636	2600	2660	
D	Fiddle	2655	2621	2690	
E	Fiddle	2676	2676	2697	
6:1/24:1 Cascaded					
Α	Triple	2640	2604	2664	
В	Triple	2617	2629	2685	
C	Double	2638	2638	2602	
D	Fiddle	2658	2658	2676	

4:1 Fiddle: This 4:1 tackle is the most common system on boats under 8.5 m (28').


6:1 Reeved Right Angle: Boats with mainsails to 35 m² (375 ft²) often use a 6:1 system.


8:1 Beachcat: This 8:1 purchase handles high mainsheet loads on Beachcats up to 6 m (20').

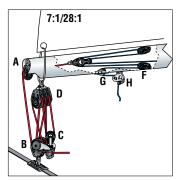

4:1 Swivel Base: Position the swivel base block off the traveler car to allow mainsail adjustment without dragging the car to windward in light air. To avoid tightening the leech, curve the track ends up.


4:1/16:1 Gross/Fine: This powerful gross-trim/fine-tune cascading system allows crew to use the 4:1 gross-trim for most trimming and the 16:1 fine-tune for precise adjustments.

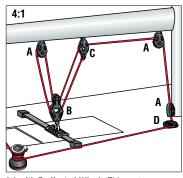
4:1/16:1 Double-ended Fine Tune:
This 4:1/16:1 system uses a dinghy-like double-ended tackle that locates the sheet ends on the cockpit sides.

6:1/24:1 Gross/Fine: This 6:1/24:1 cascading system is used on boats with end-boom sheeting and mains as large as 25.5 m² (275 ft²) and end-boom sheeting.

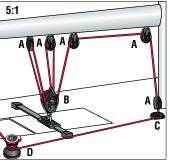
6:1/24:1 Cascaded: This 6:1/24:1 system is used on boats with mains as large as 25.5 m² (275 ft²) and end-boom sheeting.

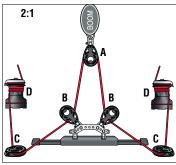

Mainsheet

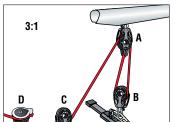
Part numbers represent hardware most commonly used.

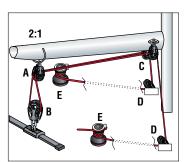

Typical boat length:

Small Boat: 6.7 - 8.5 m (22 - 28') Midrange: 8.8 - 10.4 m (29 - 34') Big Boat: 10.7 - 12.8 m (35 - 42')


Diagran Ref.	n Description	Small Boat Part No.	Midrange Part No.	Big Boat Part No.		
	:1 Gross/Fine	T dit No.	Turt No.	T dit No.		
7.1/20 A	Single	_	2600	2660		
B	Triple		2629	2685		
C	Straphead		2650	2650		
D	Triple	_	2604	2664		
E	Fiddle	_	2655	2621		
F	Cheek	_	2644	2606		
G	Through-deck	_	046	047		
Н	Pivoting lead	_	2156	2156		
4:1 wi	th Dedicated W	inch				
A	Single		6260	3231		
В	Fiddle	_	6292	3241		
С	Single w/becket	_	6261	3232		
D	Footblock	_	6267	3234		
E	Winch	_	40.2ST	46.2ST		
5:1 wi	th Dedicated W	inch				
Α	Single	2660	1540	3231		
В	Fiddle w/ becket	2691	1560	3242		
C	Footblock	1548	1548	3234		
D	Winch	35.2ST	46.2ST	46.2ST		
2:1 wi	th Dedicated Wi	inches				
Α	Single	_	1586	3231		
В	Single	_	1540	3215		
C	Footblock	_	1548	3220		
D	Winch	_	40.2ST	46.2ST		
Admira	al's Cup 2:1 wit	h Dedicated	Winches			
Α	Double	_	1544	3233		
В	Single	_	1586	3246		
С	Single	_	1540	3231		
D	Footblock	_	1548	3234		
E	Winch		35.2ST	46.2ST		
3:1 with Dedicated Winch						
Α	Single w/becket	_	_	3247		
В	Single	_	_	3246		
C	Stand-up	_	_	3254		
D	Winch	_	_	46.2ST		


7:1/28:1 Gross/Fine: This gross-trim/finetune system is found on racing multihulls where it is desirable to split the gross-trim from the fine-tune. Placing the fine-tune in the boom provides a very clean system that the trimmer can get a hold of and put his weight into. The powerful cascading finetune portion is used to haul the boom in that last little bit.


4:1 with Dedicated Winch: This system moves the traveler over the companionway to clean up the cockpit. A favorite on cruising boats.


5:1 with Dedicated Winch: This system is popular on cruising boats with cabintop travelers. The sheet leads forward to the gooseneck and then down and back to a winch on the aft edge of the cabintop.

2:1 with Dedicated Winches: This simple double-ended system lets the mainsheet run freely through the blocks which allows the traveler car to move easily. The trimmer makes sail adjustments from the high side.

3:1 with Dedicated Winch: Many large boats use this simple 3:1 system. A block on deck turns the sheet to a winch.

Admiral's Cup 2:1 with Dedicated Winches: In this system, the traveler is independent of the mainsheet so it rolls freely. The sheet leads forward along the boom before it turns down and aft to winches. Used on race boats like the Farr® 40.

Mainsheet

Two-Speed Mainsheets

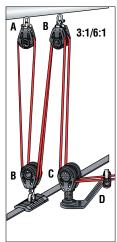
Part numbers represent hardware most commonly used.

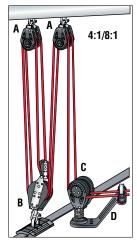

 Typical boat length:

 Small Boat:
 6.7 - 8.5 m (22 - 28')

 Midrange:
 8.8 - 10.4 m (29 - 34')

 Big Boat:
 10.7 - 12.8 m (35 - 42')

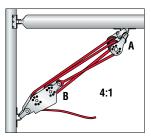

Diagram	1	Small Boat	Midrange	Big Boat
Ref.	Description	Part No.	Part No.	Part No.
2:1/4:1	Swivel Base			
Α	Double	2602	_	_
В	Single	2600	_	_
С	Double	2634	_	_
D	Cam base	402	_	_
3:1/6:1				
Α	Cross block	400	400	_
В	Fiddle	401	401	_
3:1/6:1	Swivel Base			
Α	Single	2600	2600	_
В	Double	2602	2602	_
C	Double	2634	2634	_
D	Cam base	402	402	_
4:1/8:1	Swivel Base			
Α	Double	2602	2602	_
В	Cross block	400	400	_
C	Double	2634	2634	_
D	Cam base	402	402	_


2:1/4:1 Swivel Base: This system is often found on boats like J/24s where a center-mounted swivel base is desired.

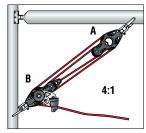
3:1/6:1: This 3:1/6:1 two-speed system is used on end-boom sheeting and mainsails up to 22.3 m² (240 ft²).

3:1/6:1 Swivel Base: This 3:1/6:1 system allows the mainsheet trimmer to be positioned anywhere on the boat. A great setup for sportboats.

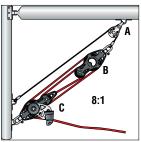
4:1/8:1 Swivel Base: Similar to the 3:1/6:1 swivel base system, but uses a 4:1/8:1 tackle for more power.

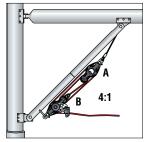

Boom Vangs

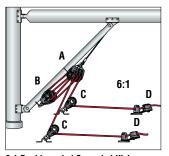
Part numbers represent hardware most commonly used.


Typical boat length:

Small Boat: 6.7 - 8.5 m (22 - 28') Midrange: 8.8 - 10.4 m (29 - 34') Big Boat: 10.7 - 12.8 m (35 - 42')


Diagran	n	Small Boat	Midrange	Big Boat			
Ref.	Description	Part No.	Part No.	Part No.			
4:1 V-	Jam						
Α	Double	226	_	_			
В	Fiddle	245	_	_			
4:1 Fid	idle						
A	Fiddle	2655	2621	1559			
В	Fiddle	2658	2624	1564			
8:1 Ca	scaded Fiddle						
Α	Single	300	304	308			
В	Fiddle	2655	2621	1559			
C	Fiddle	2658	2624	1564			
4:1 Ca	4:1 Cascaded Kicker						
Α	Fiddle	2655	2621	1559			
В	Fiddle	2658	2624	1564			
6:1 Do	6:1 Double-ended Cascaded Kicker						
Α	Triple	344	2640	2604			
В	Double	342	2638	2602			
C	Single	349	2652	2600			
D	Cam cleat	241	240	240			

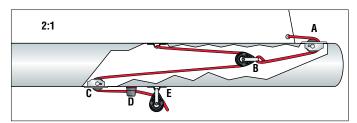

4:1 V-Jam: This simple 4:1 self-cleating vang is used on small dinghies.


4:1 Fiddle: The basic 4:1 fiddle block vang is commonly used on dinghies and small keelboats.

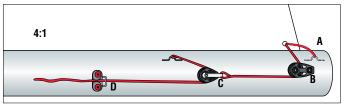
8:1 Cascaded Fiddle: A doubling block increases the purchase of the vang to 8:1. The load on the fiddle blocks is halved so they can be used safely on larger boats.

4:1 Cascaded Kicker: This rigid rod vang utilizes a simple 4:1 tackle. The rod also serves as a topping lift for the boom. Used on cruising and racing boats.

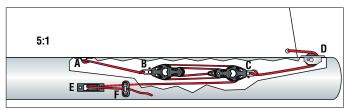
6:1 Double-ended Cascaded Kicker: Many racers rig the vang with a double-ended control line led down each side of the boat.

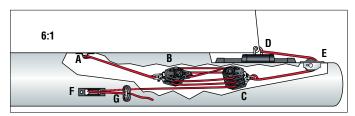

Outhaul Systems

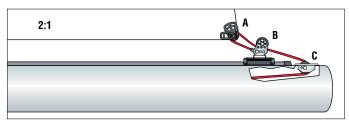
Part numbers represent hardware most commonly used.


Typical boat length:

Small Boat: 6.7 - 8.5 m (22 - 28') Midrange: 8.8 - 10.4 m (29 - 34') Big Boat: 10.7 - 12.8 m (35 - 42')


Diagran Ref.	1 Description	Small Boat Part No.	Midrange Part No.	Big Boat Part No.			
2:1 Int							
Α	Through-deck	106	302	306			
В	Single	348	2650	2152			
C	Through-deck	1200	1202	1203			
D	Cam cleat	468	150	150			
E	Single	349	2149	2149			
4:1 Ext	ternal Cascade						
Α	Eyestrap	281	137	1558			
В	Cheek	350	2644	2606			
С	Single	2146	2148	2152			
D	Cam cleat	468	365	150			
5:1 Int	ernal						
Α	Eyestrap	201	137	1558			
В	Fiddle	2655	2621	2690			
C	Fiddle	2656	2622	2691			
D	Through-deck	1200	1202	1203			
E	Through-deck	1200	1200	1200			
F	Cam cleat	468	150	150			
6:1 Int	ernal						
A	Eyestrap	201	137	1558			
В	Double	407	343	2639			
C	Triple	408	344	2640			
D	Traveler	2727	T2701B	T2701B.HL			
E	Through-deck	1200	1202	1203			
F	Through-deck	1200	1200	1200			
G	Cam cleat	468	150	150			
2:1 Fu	2:1 Furling Main						
A	Clew block	371					
В	Traveler	G222B	1648	3076			
C	Through-deck	1200	1202	1203			

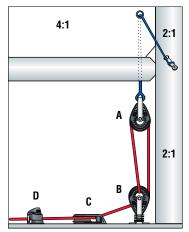

2:1 Internal: Suitable for dinghies or small keelboats. A flexible cable shackles to the sail and enters the boom through a wire block. Placing a block aft of the cleat allows the crew to pull from a variety of positions.


4:1 External Cascade: A simple external outhaul system. A cascade of two 2:1 tackles produces a 4:1 advantage.

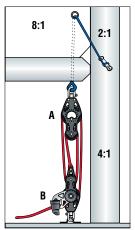
5:1 Internal: This 5:1 internal outhaul is popular on small offshore boats.

6:1 Internal: A 6:1 internal outhaul system is popular on small-to-medium-sized offshore boats using a traveler car to carry the clew of the mainsail.

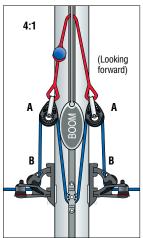
2:1 Furling Main: Mainsails that furl into the mast are loose-footed and usually have a ball bearing outhaul car that rides the length of the boom. The outhaul starts at the car, leads through the clew block on the sail, back to the sheave on the car, and into the boom where it leads to a winch.

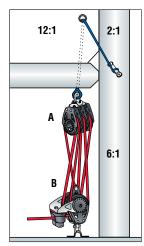


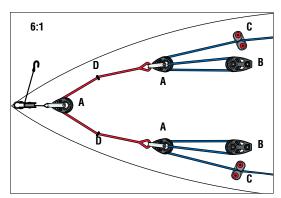
Cunninghams


Part numbers represent hardware most commonly used.

Typical boat length:


Diagram		Small Boat	Midrange	Big Boat
Ref.	Description	Part No.	Part No.	Part No.
4:1 Casca	ded			
Α	Single	2146	2148	_
В	Stand-up	349	2652	_
C	Cheek	350	2644	_
D	Cam cleat	470	458	_
8:1 Casca	ded			
Α	Fiddle	244	2655	2621
В	Fiddle	245	2658	2624
4:1 Double	e-Ended Casc	aded		
Α	Single	348	_	_
В	Pivoting lead	395	_	_
C	Cheek	233	_	_
12:1 Casc	aded			
Α	Triple	344	2640	2640
В	Triple	347	2648	2648
6:1 Doubl	e-Ended Jib D	ownhaul		
Α	Single	2146	2149	2152
В	Cheek	350	2644	2606
C	Cam cleat	468	150	150
D	Bullseye	339	339	237

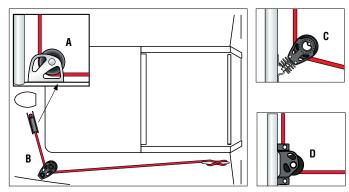

4:1 Cascaded: This simple 4:1 system leads aft to the cockpit. A favorite on small keelboats and daysailers.


8:1 Cascaded: The most basic cunningham is a self-cleating 8:1 tackle positioned at the mastbase.

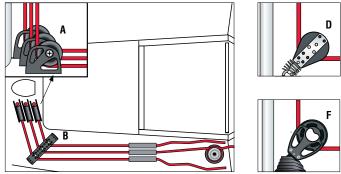
4:1 Double-ended Cascaded: This system is easy to adjust from the trapeze. It's easy to rig and unrig. Popular on smaller beachcats.

12:1 Cascaded: This simple 2:1 purchase is attached to a 6:1 cascade for a 12:1 system. Used on larger racing and cruising boats.

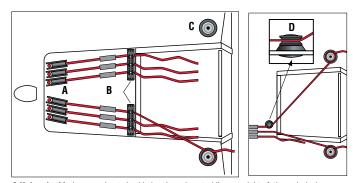
6:1 Double-ended Jib Downhaul: Small boats like J/24s use a double-ended genoa cunningham system to adjust draft from the weather rail.



Mastbase & Cabintop Blocks


Part numbers represent hardware most commonly used.

Typical boat length:

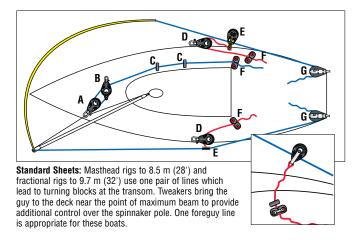

Diagrar	<u> </u>	Small Boat	Midrange	Big Boat	
Diagrar Ref.	Description	Part No.	Part No.	Part No.	
		Fait NU.	rait NU.	rait No.	
1 Haly					
A	Mastbase	222	1986	1990	
В	Cheek	2644	2606	3220	
C	Single	2652	_	_	
D	Flip-Flop	2142	3122	1987	
3 Haly	ards				
Α	Mastbase	222	1986	1990	
В	Deck organizer	9001	9001	9006	
C	Winch	20.2PTP	35.2PTP	40.2PTP	
D	Single	2636	2660	1540	
E	Stand-up spring	097	071	1634	
F	Stand-up	2652	3227	3244	
6 Haly	ards				
Α	Mastbase	1986	1988	1990	
В	Deck organizer	9001	9006	9006	
C	Winch	20.2PTP	35.2PTP	40.2PTP	
D	Crossover	_	1984	1981	
Over t	he Top				
Α	Mastbase	1986	1988	1990	
В	Mastbase	1986	1988	1990	
C	Mastbase	3002	3002	3002	

1 Halyard: This simple system leads principle halyards aft. Used by boats under 9 m (30').

3 Halyards: Larger boats use special mastbase halyard lead blocks. Lines are routed out to deck organizers then aft to stoppers and winches. Stand-up blocks on a base are sometimes preferred for their complete articulation, but they hold halyards higher off the deck than specialized mastbase blocks.

6 Halyards: Modern race boats lead halyards and control lines straight aft through deck organizers so they can be used on either cabintop winch.

Over-the-Top: Special "over-the-top" blocks are required to route lines over an outside corner like the front of a doghouse or coaming.




Spinnaker

Part numbers represent hardware most commonly used.

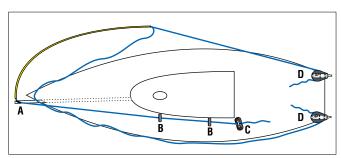
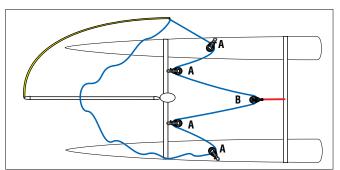
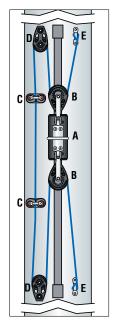

Typical boat length:

Diagram Ref.	Description	Small Boat Part No.	Midrange Part No.	Big Boat Part No.
Standar	d Sheets			
Α	Single	2636	2600	_
В	Single	2637	2601	_
C	Bullseye	339	237	_
D	Single	340	2636	<u> </u>
E	Single	2146	2149	_
F	Cam cleat	468	150	
G	Single	2625	2660	_
Standar	d Sheets an	d Guys		
Α	Single	_	2600	2660
В	Single	_	2636	2600
C	Bullseye	_	237	237
D	Stand-up	_	3227	3244
E	Cam cleat	_	150	150
F	Single	_	3226	3231
Asymme	etrical on S _l	prit		
Α	Single	2148	2660	3231
В	Bullseye	339	237	237
C	Cam cleat	150	150	280
D	Single	2680	1549/1571	3215
Continu	ous Line—B	eachcat		
	Multihulls	2.4 - 4.3 m (8 - 14')	4.6 - 6 m (15 - 20')	6.4 - 9 m (21 - 30')
Α	Single	2625	2625	2680
В	Single	2146	2148	2151

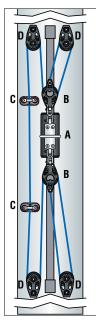


Standard Sheets & Guys: Offshore boats over 9 m (30') use separate sheets and guys. The sheets lead to turning blocks at the transom, while the guys lead to blocks at the point of maximum beam and then to a winch. A double-ended foreguy adjusts from either side of the boat.

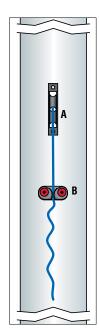
Asymmetrical on Sprit: Boats with asymmetrical spinnakers and retractable (or removable) bowsprits are rigged with a tack line leading through a block on the end of the sprit, and aft to a cleat or stopper. Two sheets attach to the clew of the sail, with the lazy sheet leading aft ahead of the headstay, over the sprit, and outside the shrouds and sheets.


Continuous Line: Beachcats install two Carbo auto ratchets on each side of the boat to manage high spinnaker sheet loads. Use 57 mm ratchets on catamarans up to 6 m (20'). Use 75 mm ratchets on multihulls to 9 m (30').

Spinnaker Pole Handling & Halyards


Part numbers represent hardware most commonly used.

Typical boat length:

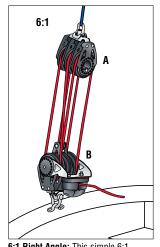

Diagram	1	Small Boat	Midrange	Big Boat
Ref.	Description	Part No.	Part No.	Part No.
2:1 Spi	nnaker Pole			
Α	Spinnaker pole car	3188	3189	3097
В	Single	2146	2148	2148
C	Cam cleat	150	150	150
D	Cheek	350	2644	2644
E	Eyestrap	201	073	137
3:1 Spi	nnaker Pole			
Α	Spinnaker pole car	3188	3189	3097
В	Single	2146	2149	2152
С	Cam cleat	150	150	150
D	Cheek	350	2644	2644
Spinna	ker Halyard throug	h Spar		
Α	Exit block	089	134	_
В	Cam cleat	150	150	_
Pole La	auncher			
Α	Single	340	_	_
В	Single w/becket	341		_
C	Bullseye	237	_	_
D	Eyestrap	137	_	_

2:1 Spinnaker Pole: This system allows the inboard end of the pole to be moved under load. It features a continuous adjuster line and 2:1 controls.

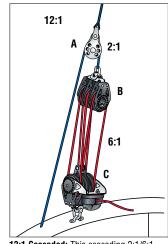


3:1 Spinnaker Pole: This adjustable system features 3:1 controls for more power.

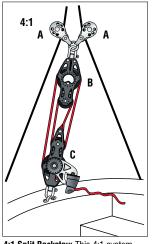
Spinnaker Halyard through Spar: Smaller offshore boats often mount a cam cleat below the spinnaker halyard exit so crew can jump the halyard and cleat it to the mast when setting the spinnaker. The cam also holds the line should the sail fill prematurely.

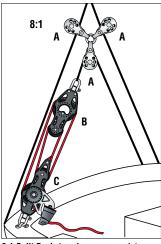

Pole Launcher: Many racing boats have asymmetrical spinnakers and retractable bowsprits. This system features a launcher line on top of the pole, with strong shockchord on the bottom to automatically retract the pole when the launcher line is uncleated.

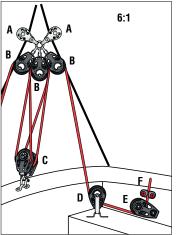
Backstay Adjuster


Part numbers represent hardware most commonly used.

Typical boat length:


Diagram	1	Small Boat	Midrange	Big Boat
Ref.	Description	Part No.	Part No.	Part No.
6:1 Rig	ht Angle			
Α	Triple	2640	_	_
В	Triple	2648	_	_
12:1 Ca	scaded			
Α	Single	300	_	_
В	Triple	344	_	_
C	Triple	347	_	_
4:1 Spi	it Backstay			
Α	Single	304	308	_
В	Fiddle	2621	2621	_
C	Fiddle	2624	2624	_
8:1 Spi	it Backstay			
Α	Single	304	308	_
В	Fiddle	2655	2621	_
C	Fiddle	2658	2624	_
6:1 Dou	ble-ended Split			
Α	Single	300	304	_
В	Single	340	2600	_
C	Double	342	2602	_
D	Stand-up	349	2652	_
E	Cheek	350	2644	_
F	Cam cleat	150	150	_
Double	-acting Hydraulic	Backstay	Adjuster	
A	Backstay adjuster	_		HCI040160385BCC.NG HCI045160385BCC.NG


6:1 Right Angle: This simple 6:1 system is used on small cruising boats with a single line or wire backstay.


12:1 Cascaded: This cascading 2:1/6:1 system provides a 12:1 purchase and is used on small racer/cruisers and daysailers.

4:1 Split Backstay: This 4:1 system is used on small keelboats with split backstay systems. Pinching the wires together tightens the backstay and increases headstay tension to flatten the genoa, decrease weather helm, and stabilize the rig in heavy air.

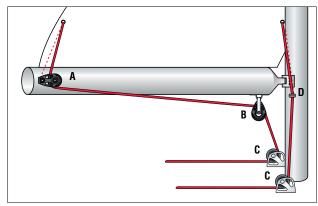
8:1 Split Backstay: A more powerful version of the split backstay adjuster uses a doubling wire running through a wire block for a purchase of 8:1.

6:1 Double-ended Split: This double-ended split backstay system leads lines forward to cam cleats mounted just ahead of the helmsman so adjustments can be made from either side of the boat.

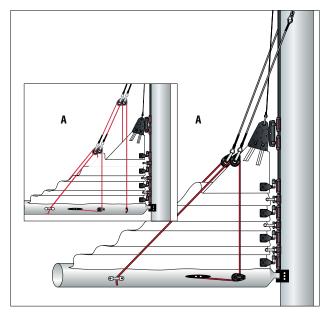
Double-acting Hydraulic Backstay Adjusters: These powerful systems deliver oil when the handle is pushed and pulled, delivering oil twice as fast as single-acting pumps an excellent choice for racer/cruisers.

Mainsail Reefing

Part numbers represent hardware most commonly used.


Typical boat length:

 Syptical Boat:
 6.7 - 8.5 m (22 - 28')

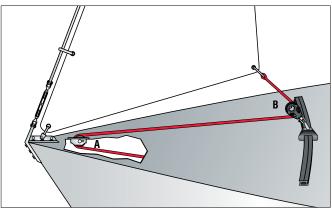

 Midrange:
 8.8 - 10.4 m (29 - 34')

 Big Boat:
 10.7 - 12.8 m (35 - 42')

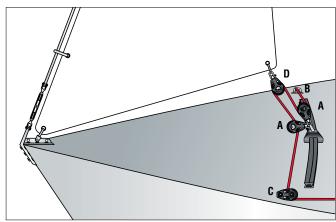
Diagran Ref.	n Description	Small Boat Part No.	Midrange Part No.	Big Boat Part No.
Dual L	ine			
Α	Cheek	2644	6237	3220
В	Single	2650	2600	3215
C	Mastbase block	222	1986	1988
D	Bullseye	339	237	237
Lazy J	acks			
Α	Lazy Jack kit	252	253	254

Dual Line: This dual-line system is common on boats 9 m (30') and larger. Position blocks so line pulls down and out to keep the sail flat and prevent lateral loads on the luff rope or luff sliders.

Lazy Jacks: Lazy Jacks contain mainsails during reefing and dousing. They work exceptionally well with full-battened mains, but are also used with conventional sails.

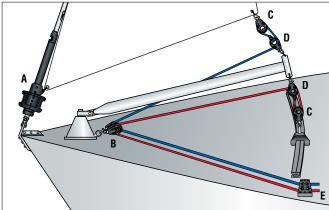

Self-Tacking Jibs & Staysails

Part numbers represent hardware most commonly used.


Typical boat length:

Small Boat: 6.7 - 8.5 m (22 - 28') 8.8 - 10.4 m (29 - 34') Midrange: Big Boat: 10.7 - 12.8 m (35 - 42')

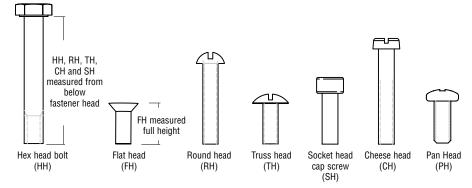
Diagran	n	Small Boat	Midrange	Big Boat	
Ref.	Description	Part No.	Part No.	Part No.	
Stand	ard Self-tacker				
Α	Through-deck	1200	1202	1203	
В	Single	2636	2600	3226/1540	
2:1 Se	elf-tacker				
Α	Single	_	2660	3226	
В	Padeye	1558	688	689	
C	Cheek	6237	6267	3220	
D	Single	_	2660	3215	
Self-t	acker on Jib Bo	om			
Α	Furler	Unit 0	Unit 1	Unit 2	
В	Double	2602	2662	3217	
C	Single	2600	2660	3215	
D	Single	2601	2661	3216	
E	Deck organizer	9000	9005	9005	
	·				



Standard Self-tacker: This system is often used on course racing keelboats like Solings. The traveler track is bent in a radius equal to the distance from the headstay to the sheeting point along the LP of the sail.

2:1 Self-tacker: Self-tacking jibs are popular because they keep the foredeck clean.

Self-tacker on Jib Boom: Self-tacking jibs and staysails work well with furling systems and jib booms. This system features two "sheets"—one controls the in and out movement of the sail much like an outhaul. The other controls the boom.


Metric Conversions

This catalog shows both imperial and metric measurements. In most cases, the metric dimension shown is calculated from the imperial measurement and rounded to a whole number. For example, 5/16" is generally shown as 8 mm, while an exact conversion would be 7.9375 mm. When referring to a line diameter, it is sufficient to approximate the conversion. In cases where a dimension is critical, exact metric dimensions are shown. For example, a clevis pin for a furling unit with a diameter of 1/2" is shown as 12.7 mm.

Length			Area		
When you know	Multiply by	To find	When you know	Multiply by	To find
Inches	25.40	Millimeters	Square inches	645.2	Square millimeters
Inches	2.540	Centimeters	Square inches	6.452	Square centimeters
Feet	304.80	Millimeters	Square feet	929.0	Square centimeters
Feet	30.48	Centimeters	Square feet	0.0929	Square meters
Feet	0.3048	Meters	Square yards	0.8361	Square meters
When you know	Divide by	To find	When you know	Divide by	To find
Millimeters	25.40	Inches	Square millimeters	645.2	Square inches
Centimeters	2.540	Inches	Square centimeters	6.452	Square inches
Millimeters	304.8	Feet	Square centimeters	929.0	Square feet
Centimeters	30.48	Feet	Square meters	0.0929	Square feet
Meters	0.3048	Feet	Square meters	0.8361	Square yards
Weight					
When you know	Multiply by	To find	When you know	Divide by	To find
Ounces	28.35	Grams	Grams	28.35	Ounces
Pounds	0.4535	Kilograms	Kilograms	0.4535	Pounds
Liquid		<u> </u>			
When you know	Multiply by	To find	When you know	Multiply by	To find
Liters	0.26417	Gallons	Gallons	3.7854	Liters
Liters	2.1134	Pints	Pints	.4731	Liters

To use the online calculator for finding length, area and weight go to www.harken.com

Fastener Types

Drilling Guide

Fastener	Drill for clearance hole	Drill for tapping		Drill for clearance hole	Drill for
mm	mm	mm	Fastener	in	tapping
2	2.25	1.6	6-32	9/64	#36
2.5	2.75	2.05	8-32	11/64	#29
3	3.25	2.5	10-24	13/64	#25
4	4.25	3.25	10-32	13/64	#21
5	5.25	4.25	1/4-20	17/64	#7
6	6.25	5	5/16-18	21/64	#F
8	8.25	6.75	3/8-16	25/64	5/16"
10	10.25	8.5	7/16-14	29/64	#T
12	12.25	10.25	1/2-13	33/64	27/64"
16	16.26	14	5/8-11	41/64	17/32"

Equivalency Table

Fraction	Decimal	mm
1/32	0.0313	.7938
1/16	0.0625	1.5875
3/32	0.0938	2.3813
1/8	0.125	3.175
5/32	0.1563	3.9688
3/16	0.1875	4.7625
7/32	0.2188	5.5563
1/4	0.25	6.35
9/32	0.2813	7.1438
5/16	0.3125	7.9375
11/32	0.3438	8.7313
3/8	0.375	9.525
13/32	0.4063	10.3188
7/16	0.4375	11.1125
15/32	0.4688	11.9063
1/2	0.5	12.7
17/32	0.5313	13.4938
9/16	0.5625	14.2875
19/32	0.5938	15.0813
5/8	0.625	15.875
21/32	0.6563	16.6688
11/16	0.6875	17.4625
23/32	0.7188	18.2563
3/4	0.75	19.05
25/32	0.7813	19.8438
13/16	0.8125	20.6375
27/32	0.8438	21.4313
7/8	0.875	22.225
29/32	0.9063	23.0188
15/16	0.9375	23.8125
31/32	0.9688	24.6063

Ball Bearing Replacement Chart

Car	Bearing style	Part number	Description	Car width	Carl	Car length	# balls per car	Ball material	Ball kit		Ball diameter	r Car loader	Car loader for CB+ to non-CB
				in	.⊑	E			Part No. #Balls	Balls	in mm	Included	Order
		CB+ car CB-only car	Non-CB car	Car body width	Length —	eHe		Delrin° Torlon°					
	CB only	2700, 2701, 2702, 2703	Micro CB	19/16 40	2 3/16	26	49	Torlon	2708	20 3	3/16 5		1
	CB+	2726, 2728, 2730, 2732, 2744	Small Boat CB	2 3/16 56	2 7/8	73	40	Delrin	176	. 12	1/4 6	1	HSB116
	CB+	2727, 2729, 2731, 2733, 2734, 2745	Small Boat CB high-load	2 3/16 56	2 7/8	73	40	Torlon	177	. 12	1/4 6	ı	HSB116
	CB+	2735, 2736, 2737, 2738, 2746	Small Boat CB 1250 series	2 3/16 56	4 1/8	105	09	Torlon	177	. 12	1/4 6	_	HSB116
	Non-CB	156, 157, 171, 211	Small Boat	2 3/16 56	2 7/8	73	42	Delrin	176	. 12	1/4 6	HSB116	_
	Non-CB	158, 159, 172, 210, 212	Small Boat high-load	2 3/16 56	2 7/8	73	42	Torlon	177	. 12	1/4 6	HSB116	-
	Non-CB	214, 215, 247, 440, 441	Small Boat 1250 series	2 3/16 56	4 3/8	Ξ	64	Torlon	177	. 12	1/4 6	HSB116	I
	CB+	T2701B, T2702B, T2703B, T2705B, T2721B, T2722B, T2731B, T2732B, T2741B, T2742B	T27 Midrange CB	2 3/4 70	4 1/4	108	48	Torlon	1526	25 5	5/16 8	I	HMR2
	CB+	T27018.HL, T27028.HL, T27038.HL, T27058.HL, T27218.HL, T27228.HL, T27318.HL, T27328.HL, T27418.HL, T27428.HL	T27 Midrange CB high-load	2 3/4 70	5 3/16	132	09	Torlon	1526	25 5	5/16 8	I	HMR2
	CB+	T2704B.HL, T2744B.HL	T27 Midrange CB 2 cars with 2 toggles	2 3/4 70	4 1/4	108	48 x 2	Torlon	1526	25 5	5/16 8	I	HMR2 x 2
	CB+	1635	Midrange CB windward sheeting	2 3/4 70	4 1/4	108	48	Torlon	1526	25 5	5/16 8	_	HMR2
Я	+BO	1636	Midrange CB high-load windward sheeting	2 3/4 70	53/16	132	09	Torlon	1526	25 5	5/16 8	I	HMR2
3.	CB+	1624, 1628	Midrange CB	2 3/4 70	4 1/4	108	48	Torlon	1526	25 5	5/16 8	I	HMR2
13	CB+	1629	Midrange CB long	2 3/4 70	5 3/16	132	09	Torlon	1526	25 5	5/16 8	1	HMR2
Λ۲	CB only	1626, 1640	Midrange CB	2 3/4 70	4 1/4	108	48	Torlon	1526	25 5	5/16 8	ı	I
8	CB only	1625, 1627, 1641	Midrange CB long	2 3/4 70	5 3/16	132	09	Torlon	1526	25 5	5/16 8	I	1
1	Non-CB	1508, 1575, 1594	Midrange	2 3/4 70	4 1/4	108	48	Torlon	1526	25 5	5/16 8	HMR2	I
	Non-CB	1509, 1576, 1595	Midrange long	2 3/4 70	5 1/4	133	09	Torlon	1526	25 5	5/16 8	HMR2	I
	Non-CB	1604	Midrange with 2 toggles	2 3/4 70	7 1/4	184	98	Torlon	1526	25 5	5/16 8	HMR47	1
	CB+	73201B, 73202B, 73203B, 73205B, 73221B, 73222B, 73231B, 73232B, 73241B, 73242B	T32 Big Boat CB 3000 series	3 5/16 85	5 3/8	136	20	Torlon	547	25	3/8 10	I	HBB1
	CB+	T3201B.H., T3202B.H., T3203B.H., T3205B.H., T3221B.H., T3222B.H., T3231B.H., T3232B.H., T3241B.H., T3242B.H., T3243B.H.	T32 Big Boat CB 4500 series	3 5/16 85	7 7/16	188	72	Torlon	547	55	3/8 10	I	HBB28
	CB+	T3204B, T3224B, T3234B, T3244B, T3209B	T32 Big Boat CB 5000 series with 2 toggles/shackles	3 5/16 85	9 1/8	231	06	Torlon	547	25	3/8 10	I	HBB25
	CB+	T3204B.HL, T3224B.HL, T3234B.HL, T3244B.HL, T3209B.HL	T32 Big Boat CB 2 high-load cars with 2 toggles	3 5/16 85	7 7/16	188	72 x 2	Torlon	547	25 (3/8 10	ı	HBB28 x 2
	CB+	T3208B	T32 Big Boat CB 2 cars with 2 toggles	3 5/16 85	5 3/8	136	50 x 2	Torlon	547	25	3/8 10	I	HBB1 x 2
	CB+	3176, 3177	Big Boat CB 3000 series windward sheeting	3 5/16 85	5 3/8	136	20	Torlon	547	25	3/8 10	I	HBB1
	CB+	3178, 3179	Big Boat CB 4500 series windward sheeting	3 5/16 85	7 7/16	188	72	Torlon	547	25 (3/8 10	1	HBB28
	CB+	3160, 3163, 3164	Big Boat CB 3000 series	3 5/16 85	5 3/8	136	50	Torlon	547	25 (3/8 10	I	HBB1
	CB+	3161, 3165, 3166	Big Boat CB 4500 series	3 5/16 85	7 7/16	188	72	Torlon	547	25	3/8 10	1	HBB28
7 Delrin	is a registere	Olerin is a registered trademark of E 1 du Pont de Nemours and Company or its affiliates	s affiliates Torlon is a registered trademark of Solvay Advanced Polymers 1.1.	demark of Sc	Vav Adv	nced Po	lymers	c					

Torlon is a registered trademark of Solvay Advanced Polymers L.L.C. Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.

Car	Bearing	Part number	Description	Car width in mm		Car length	# balls per car	Ball material	Ball kit Part No. #	Balls	Ball diameter in mm	Car loader Included	Car loader for CB+ to non-CB Order
		CB+ car CB-only car	Non-CB car	the distribution of the di	Гендін —	AHA		Delrin* Torlon*					
	CB only	3167	Big Boat CB 5000 series with 2 toggles/shackles	3 5/16 85	9 1/8	231	06	Torlon	547	25	3/8 10	1	
	Non-CB	515, 608, 1928, 1930	Big Boat 3000 series	3 5/16 85	5 1/4	133	20	Torlon	547	22	3/8 10	HBB1	1
Я	Non-CB	558, 609, 1929, 1931	Big Boat 4500 series	3 5/16 85	7 1/4	184	72	Torlon	547	25	3/8 10	HBB28	
37	Non-CB	1939	Big Boat 5000 series with 2 toggles/shackles	3 5/16 85	8 1/2	216	06	Torlon	547	25	3/8 10	HBB25	
ΛE	Non-CB	1941	Big Boat 6000 series with 3 toggles/shackles	3 5/16 85	10 1/2	267	110	Torlon	547	25	3/8 10	HBB25	1
AЯ	Non-CB	3074	Big Boat CRX	3 5/16 85	2	127	102	Torlon	H-38349A	Rollers		1	
I	Non-CB	3075	Big Boat CRX	3 5/16 85	7 1/2	191	148	Torlon	H-38349A	Rollers		1	
	Non-CB	3068	Mini-Maxi	4 3/8 111	10	254	72	Torlon	MP-128	-	1/2 12	HBB39	
	Non-CB	3070	Maxi	5 1/4 133	13 7/8	353	104	Torlon	MP-128	-	1/2 12	HBB32	
	CB+	3188	Small Boat CB ring	2 3/16 56	4 1/8	105	09	Torlon	177	21	1/4 6	1	HSB116
=	Non-CB	780	Spinnaker pole	2 3/16 56	4 3/8	111	64	Torlon	177	21	1/4 6	HSB116	ı
70	CB+	1645, 1646, 1647	Midrange CB	2 3/4 70	5 3/16	132	09	Torlon	1526	25	5/16 8	I	HMR2
d {	CB+	3189	Midrange CB ring	2 3/4 70	5 3/16	132	09	Torlon	1526	25	5/16 8	1	HMR2
(‡)	Non-CB	1578	Midrange 120/130 bell	2 3/4 70	5 1/4	133	09	Torlon	1526	25	5/16 8	HMR2	
¥Κ	Non-CB	1579, 1580	Midrange toggle	2 3/4 70	5 1/4	133	09	Torlon	1526	25	5/16 8	HMR2	
N۸	CB+	3097	Big Boat CB 120/130 bell	3 5/16 85	7 7/16	188	72	Torlon	547	25	3/8 10	I	HBB28
lΙd	CB+	3098, 3099	Big Boat CB toggle	3 5/16 85	7 7/16	188	72	Torlon	547	25	3/8 10	Ι	HBB28
S	Non-CB	782	Big Boat 120/130 bell	3 5/16 85	7 1/4	184	72	Torlon	547	25	3/8 10	HBB28	
	Non-CB	783, 784	Big Boat toggle	3 5/16 85	7 1/4	184	72	Torlon	547	25	3/8 10	HBB28	-
	CB+	G222B, G224B, G2227B, G2247B	Small Boat CB	2 3/16 56	4 1/8	105	09	Torlon	177	21	1/4 6	Ι	HSB116
	Non-CB	249	Small Boat	2 3/16 56	4 3/8	111	64	Torlon	177	21	1/4 6	HSB116	_
O	CB+	G272B, G273B, G274B, G2727B, G2737B, G2747B	Midrange CB	2 3/4 70	5 3/16	132	09	Torlon	1526	25	5/16 8	1	HMR2
A3	CB+	G273B.HL, G274B.HL, G2737B.HL, G2747B.HL	Midrange CB	2 3/4 70	6	229	96	Torlon	1526	25	5/16 8	Ι	Contact Harken
٦١	Non-CB	1537	Midrange	2 3/4 70	5 1/4	133	09	Torlon	1526	25	5/16 8	HMR2	1
10	CB+	G323B, G324B, G3237B, G3247B	Big Boat CB	3 5/16 85	9 1/8	231	06	Torlon	547	22	3/8 10	Ι	HBB25
EN	Non-CB	554	Big Boat	3 5/16 85	7 1/4	184	72	Torlon	547	25	3/8 10	HBB28	I
9	Non-CB	587	Big Boat	3 5/16 85	5 1/4	133	50	Torlon	547	22	3/8 10	HBB1	1
	Non-CB	HC4928	Big Boat	3 5/16 85	10 1/4	260	104	Torlon	547	25	3/8 10	HBB25	1
	Non-CB	3072	Mini-Maxi	4 3/8 111	13 11/16	6 348	84	Torlon	MP-128	-	1/2 12	1	1

Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.

Torlon is a registered trademark of Solvay Advanced Polymers L.L.C.

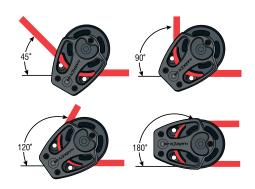
Part	Particular Par		Rearing		-	Car width	ridth	Car length	ngth	# halls	Ball	Bal	Ball kit	Ball diameter		Car loader	Car loader for CB+ to non-CB
Cth-eat*	Part	Ča	style	Part number	Description	.⊑	E	.=	E E	per car	material	Part No.	# Balls	.⊑		ncluded	Order
CRB with CRB billion Miditatings CBB billion 2.3.4 mode 70 5.3.16 mode 12.5 60 Torton 15.55 CBB mode 1615 Miditating CBB billion 2.3.4 mode 70 5.3.16 mode 70 70.00 15.55 CBB mode 30.05 Billion Billion 18.56 5.1.4 mode 73 70 70.00 5.47 CBB mode 30.05 Billion Billion 18.05 5.1.4 mode 70 70.00 5.47 Monrice 30.05 Billion 30.00 Secure 70 70.00 5.47 Billion 30.05 Billion 30.00 30.00 70.00 <th>Multimange OB 2.3.4 7.0 6.3.16 132 6.0 findow 1268 25 516 8 H/RRZ Big Beat CB 4500 series 3.516 8.3 7.14 13.3 50 Torkon 152.8 25 516 8 H/RRZ Big Beat CB 4500 series 3.516 85 7.14 13.3 50 Torkon 1547 25 38 10 —— Big Beat CB 4500 series 3.516 85 7.14 184 7.2 Torkon 547 25 38 10 —— System ACB Blacker 1.916 40 2.316 56 7.0 Torkon 27.08 20 31 6 2.316 56 7.0 70 70 7.0</th> <th>-</th> <th>200</th> <th>CB+ car</th> <th></th> <th>Car b</th> <th>₹ • • • • • • • • • • • • • • • • • • •</th> <th> ← Fength → </th> <th>eHe</th> <th></th> <th>Delrin* Torlon*</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Multimange OB 2.3.4 7.0 6.3.16 132 6.0 findow 1268 25 516 8 H/RRZ Big Beat CB 4500 series 3.516 8.3 7.14 13.3 50 Torkon 152.8 25 516 8 H/RRZ Big Beat CB 4500 series 3.516 85 7.14 13.3 50 Torkon 1547 25 38 10 —— Big Beat CB 4500 series 3.516 85 7.14 184 7.2 Torkon 547 25 38 10 —— System ACB Blacker 1.916 40 2.316 56 7.0 Torkon 27.08 20 31 6 2.316 56 7.0 70 70 7.0	-	200	CB+ car		Car b	₹ • • • • • • • • • • • • • • • • • • •	← Fength →	eHe		Delrin* Torlon*						
CBH 300° 1615 Fig 734 73 514 133 60 Toulon 1547 CBH 300° 500° Big Beat CB 3000 saries 3576 65 51.44 153 50 Toulon 547 CBH 565 565 565 51.44 153 50 Toulon 547 Mon-CB 565 565 51.44 153 50 Toulon 547 Mon-CB 1771 48 72 174 184 72 Toulon 547 Mon-CB 1771 48 72 174 184 72 Toulon 578 CB owly 3815 36 36 374 40 2316 66 41 72 Toulon 278 CB owly 3816 38 374 40 2316 66 41 72 Toulon 278 CB owly 3816 38 41 42 2316 66 <th> Modinoperators Signification Significati</th> <th></th> <th>CB+</th> <th>1648</th> <th>Midrange CB</th> <th>2 3/4</th> <th>70</th> <th>5 3/16</th> <th>132</th> <th>09</th> <th>Torlon</th> <th>1526</th> <th>25</th> <th>5/16</th> <th></th> <th>1</th> <th>HMR2</th>	Modinoperators Signification Significati		CB+	1648	Midrange CB	2 3/4	70	5 3/16	132	09	Torlon	1526	25	5/16		1	HMR2
QBP 3976 87 714 153 50 Torkon 547 QBP 3096 Big Boart CB 5000 series 35/16 85 7 144 153 50 Torkon 547 Mon-CB 1771 180 7 144 153 7 1000n 547 Mon-CB 1771 180 7 14 184 7 1000n 547 GB mby 3813 2 1 2 1 2 1000n 547 GB mby 3815 2 2 1 2 1 1 56 4 2 1 1 56 4 2 1 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1	Big Boat CB 3000 series 35/16 65 51/4 133 50 Torkin 647 25 36 10 —— Big Boat CB 3000 series 35/16 65 71/4 184 72 Torkin 647 25 36 10 —— Big Boat 3000 series 35/16 65 71/4 184 72 Torkin 547 25 36 10 —— System ALCB Intermediate car 19/16 40 23/16 65 40 Diorin 57 26 37 6 41 72 Torkin 10 40 18 72 Torkin 17 21 14 18 72 Torkin 17 21 14 18 18 72 Torkin 17 21 14 18		Non-CB	1615	Midrange	2 3/4	70	5 1/4	133	09	Torlon	1526	25	5/16	8	HMR2	1
QB MAN Big Boat CB 4500 series 3.516 8.5 7.14 164 7.2 Torton 547 Nun-CB 595 1771 164 7.2 Torton 547 Nun-CB 595 1771 164 7.2 Torton 547 Nun-CB 3815 2714 161 2716 167 Torton 577 CB ently 3815 3815 2714 167 6 40 2016 576 CB ently 3815 3815 381 278 40 2716 6 40 Delvin 40 CB ently 3815 381 40 2716 40 2716 40 Delvin 477 CB ently 3815 381 381 381 381 381 381 381 381 40 Delvin 477 CB ently 381 381 381 381 381 381 40 Delvin 478 470	Big Baut CB 4500 series 35/16 65 71/4 184 72 Toron 677 25 36 10 HeBit Debat CB 4500 series 35/16 65 71/4 184 72 Toron 677 25 36 10 HeBit Debat CB 4500 series 35/16 65 71/4 184 72 Toron 677 25 36 10 HeBit Debat CB 4500 series 35/16 65 71/4 184 20 Toron 677 25 36 10 HeBit Debat CB 4500 series 1916 60 23/16 65 40 Delin 677 20 3/16 5 System AA CB intermediate cat 1917 40 23/16 56 40 Delin 7000 270 20 3/16 5 System AA CB intermediate cat 1917 40 23/16 56 40 Delin 7000 270 20 3/16 5 System AA CB intermediate cat 23/16 56 21/4 57 30 Delin 177 21 1/4 6 System AA CB intermediate cat 23/16 56 21/8 57 30 Delin 177 21 1/4 6 System AA CB intermediate cat 23/16 56 27/8 37 40 Delin 177 21 1/4 6 HeBIT SA 2 System AA CB intermediate cat 23/16 56 21/8 57 30 Delin 177 21 1/4 6 HeBIT SA 2 System AA CB intermediate cat 23/16 56 21/8 57 30 Delin 177 21 1/4 6 HeBIT SA 2 System BA CB intermediate cat 23/16 56 21/8 57 30 Delin 170 21 1/4 6 HeBIT SA 2 System B CB intermediate cat 23/16 56 21/8 57 30 Delin 1556 25 51/8 8 HMRZ SA 2 System B CB intermediate cat 23/16 57 20 20 Delin 1556 25 51/8 8 HMRZ SA 2 System B CB intermediate cat 23/16 58 23/16 59 20 Delin 1556 25 51/8 8 HMRZ SA 2 System C CB intermediate cat 23/16 58 23/16 59 20 Delin 1500 57 25 38 10 System C CB intermediate cat 23/16 58 33/16 58 34 40 20 Delin 57 25 38 10 System C CB intermediate cat 23/16 58 33/16 58 33/16 58 33/16 58 33/16 58 33/16 58 33/16 58 33/16 58 33/16 58 33/16 58 33/16 58 33/16 58 33/16 58 33/16 58 33/16 58 33/16 58 33/		CB+	3076	Big Boat CB 3000 series	35/16	85	5 1/4	133	20	Torlon	547	25	3/8	10	1	HBB1
Non-Ce 596 596 514 133 50 Torton 547 Non-Ce 377 3815 585 714 184 72 Torton 547 Non-Ce 177 3813 3814 72 100 778 100 778 18 enly 3815 381 381 381 40 210 66 40 Delnin 402 18 enly 3815 381 381 381 40 2316 56 40 Delnin 2708 18 enly 3815 381 <td>Big Board 3000 services 35 Fig Board 5000 services 35 Fig Board 5000 services 35 Fig Board 5000 services 35 Fig Board 4500 services 35</td> <td></td> <td>CB+</td> <td>3096</td> <td>Big Boat CB 4500 series</td> <td>35/16</td> <td>85</td> <td>7 1/4</td> <td>184</td> <td>72</td> <td>Torlon</td> <td>547</td> <td>25</td> <td>3/8</td> <td>10</td> <td>ı</td> <td>HBB28</td>	Big Board 3000 services 35 Fig Board 5000 services 35 Fig Board 5000 services 35 Fig Board 5000 services 35 Fig Board 4500 services 35		CB+	3096	Big Boat CB 4500 series	35/16	85	7 1/4	184	72	Torlon	547	25	3/8	10	ı	HBB28
Mon-CB 1772 1774 184 72 Torbon 547 CB only 3813 9813 40 2 3/15 132 40 x 2 Torbon 2708 CB only 38145 982 5824em AA CB Intermediate car 1916 40 23/15 56 40 Dorbon 2708 CB only 38145 3815 58 41 1376 40 23/15 56 40 Dorbon 2708 CB enly 38141 58 381 58 40 177 177 CB+ 38141 58 41 51 56 41 57 30 Torbon 177 CB+ 38242 383 583 583 38 76 40 Torbon 177 Non-CB 1984 383 585 383 586 37 5 40 Dorbon 177 Non-CB 1984 385 385 385 385 37 40 <td>System A CB intermedate car 23/16 SG 21/4 184 72 Forton 547 25 3/8 10 HBR28 S System A CB intermedate car 19/16 40 23/16 SG 40 Forton 20/8 20 3/16 S — — — — — — — — — — — — — — — — — —</td> <td></td> <td>Non-CB</td> <td>595</td> <td>Big Boat 3000 series</td> <td>35/16</td> <td>85</td> <td>5 1/4</td> <td>133</td> <td>20</td> <td>Torlon</td> <td>547</td> <td>25</td> <td>3/8</td> <td>10</td> <td>HBB1</td> <td>ı</td>	System A CB intermedate car 23/16 SG 21/4 184 72 Forton 547 25 3/8 10 HBR28 S System A CB intermedate car 19/16 40 23/16 SG 40 Forton 20/8 20 3/16 S — — — — — — — — — — — — — — — — — —		Non-CB	595	Big Boat 3000 series	35/16	85	5 1/4	133	20	Torlon	547	25	3/8	10	HBB1	ı
CB only 3813 40 2 316 40 2 316 40 2 316 40 2 316 40 2 316 40 2 100 700 2 100 40 2 200 40 2 100 2	System ALCB Intermediate cart 19/16 4/0 2/3/16 156 4/0 10-line 1/200 2/0 3/16 5 —— System ALCB Intermediate cart 19/16 4/0 2/3/16 56 4/0 10-line 1/200 2/0 3/16 5 —— System ALCB Intermediate cart 2/3/16 56 2/14 1/0 10-line 1/200 2/0 3/16 5 —— System ALCB Intermediate cart 2/3/16 56 2/14 5/0 3/0 10-line 1/200 2/0 3/16 5 —— System ALCB Intermediate cart 2/3/16 56 2/14 5/0 3/0 10-line 1/200 2/0 3/16 5 —— System ALCB Intermediate cart 2/3/16 56 2/14 5/0 3/0 10-line 1/200 2/0 1/14 6 —— System ALCB Intermediate cart 2/3/16 56 2/14 5/0 3/0 10-line 1/200 2/0		Non-CB	1771	Big Boat 4500 series	35/16	85	7 1/4	184	72	Torlon	547	25	3/8	10	HBB28	ı
CB only 3815 Gebony 2916 Gebony CB only CB onl	System At CB intermediate carr 19/16 40 2.3/16 56 40 Deinin 492 270 3/16 5 ———————————————————————————————————	J	CB only	3813	System AA CB headboard	19/16	40	2 3/16	132	40 x 2	Torlon	2708	20	3/16	5	I	I
CBH 3816 3816 58.4 40 Corbon 2706 CBH 3811 System ACB Beatdoard 2316 56 418 105 60×2 Torbon 177 CBH 3811 System ACB Intermediate car 2316 56 21/4 57 30 40 Torbon 177 CBH 3822, 3830, 3851, 3861 System ACB Injenhoad car 2316 56 27/8 57 30 40 Torbon 177 CBH 3882, 3882, 3881, 3861, 3861, 3861, 3861, 3862, 3871, 3862, 3881, 3862, 3882	System A CB Battear 1 1916 6 12 214 6 14 6 14 1 10 10 10 10 10 10 10 10 10 10 10 10 1	٦	CB only	3815	System AA CB intermediate car	19/16	40	2 3/16	26	40	Delrin	492	20	3/16	2	I	I
QBH 3811 CRP 5912 CRP 5376 56 4.1% 175 300 Torlon 177 CBH 3812 Shistem A CB Intermediate car 2316 56 2.14 57 30 Torlon 177 CBH 3820, 3831, 3881 Shistem A CB Battara 2.316 56 2.18 5 4.18 100 Torlon 177 Mon-CB 1722, 1807 56 3.56 5 3.5 5 2 5 2 177 177 Mon-CB 1722, 1807 56 3.5 3.5 5 5 2 5 2 5 2 17 177 Mon-CB 1894 1722, 1807 5 3.4 7 5.16 5 2 18 3 6 2 17 17 Mon-CB 1894 3882 3887 3887 3.4 7 5.16 6 3.0 1000 17 17 Mo	System A CB thatchoard 23/16 56 21/4 57 30 forton 177 21 1/4 6 —— System A CB thirthrediate care System B CB thatcare System C CB thatchoard care System C CB that capsistered trademark of E I. du System C CB that capsistered trademark of E I. du System C CB tha	٦	CB only	3816	System AA CB Battcar	19/16	40	2 3/16	56	40	Torlon	2708	20	3/16	5	ı	I
QP+ 3812 System A CB Battear 2.316 56 2.14 57 30 Torlon 177 QB+ 3829, 3830, 3831, 3881 System A CB Battear 2.316 56 2.78 73 40 Torlon 177 QB+ 3822, 3883 System A CB Injoh-Load 2.316 56 2.78 70 40 Torlon 177 Mor-CB 1925, 1901, 1944, 1976, 1977 System A Pattear 2.316 56 2.18 40 Delin/Torlon 177 Mor-CB 1894 382, 382 382 2.9 5.2 6 40 Delin/Torlon 177 CB+ 382 382 382 382 382 36 48 10 160 177 CB+ 382 382 382 382 382 10 48 10 160 177 CB+ 385 385 385 385 38 38 10 10 48 10 10 48	System A CB Bitteran 2 316 56 2 14 57 30 Torlon 177 21 14 6 ————————————————————————————————————		CB+	3811	System A CB headboard	23/16	26	4 1/8	105	60 x 2	Torlon	177	21	1/4	9	ı	HSB116 x 2
QB+ 3822, 3830, 3831, 3861 System A CB Battcar 2316 56 21/8 73 40 Torlon 177 Mon-CB 1728, 3882, 3883 System A CB high-load 2316 56 21/8 56 22/8 50 Torlon 177 Mon-CB 1728, 1807 System A Martaar 2316 56 3 76 40 Delin/Torlon 177 Mon-CB 1825, 1901, 1944, 1976, 1377 System A Bratcar 2316 56 3 76 40 Delin/Torlon 177 Mon-CB 1834 3862, 3857, 3659, 3879 System B CB Battcar 234 70 516 80 20 Delin/Torlon 1526 CB+ 3865, 3857, 3659, 3879 System B CB Battcar 234 70 516 97 40 Delin/Torlon 1526 CB+ 3865, 3857, 3659, 3879 System B Intermediate car 234 70 5146 97 40 Delin/Torlon 1526 Mon-CB 1799 System CB Battcar System CB Ba	System A CB Battcart 2316 56 27% 69 10 100 177 21 144 6 — — — — — — — — — — — — — — — — — —		CB+	3812	System A CB intermediate car	23/16	26	2 1/4	22	30	Torlon	177	21	1/4	9	1	HSB116
QPH 3882, 3883 System A CB high-load 23.16 56 3.68 92 52.2.2 Delrin/Torlon 177 Non-CB 1792, 1807 System A headboard car 23.16 56 3.5.8 92 52.2.2 Delrin/Torlon 177 Non-CB 1894 1925, 1901, 1944, 1976, 1977 System A Battcar 23.16 56 2.18 54 30 Delrin/Torlon 177 Non-CB 1894 3862 287,8 57 54 30 Delrin/Torlon 177 CB+ 3865, 3857, 3859, 3859 3859 57,8 70 5,316 68 28 70 Delrin/Torlon 177 CB+ 3865, 3857, 3859, 3859 3859 5857 8 70 4,36 11 48.2 Delrin/Torlon 1526 CB+ 3860 3857, 3859, 3859 3859 8 11 48.2 Delrin/Torlon 1526 Non-CB 1734, 1826, 1902, 1946, 1978, 1980 System B Battcar 234 70 43.8	System A Cel high-load Car		CB+	3829, 3830, 3831, 3881	System A CB Battcar	23/16	56	2 7/8	73	40	Torlon	177	21	1/4	9	ı	HSB116
Non-CB 1792, 1807 System A haadboard car 23/16 56 3.56 9.2 52.2 Delrin/Torlon 177 Non-CB 1925, 1901, 1944, 1976, 1977 System A Battcar 23/16 56 3.7 6 4.0 Delrin/Torlon 177 Non-CB 1894 3852 2.8 3.6 2.3 7.6 4.0 Delrin/Torlon 177 CB+ 3852 3852 3.8 3.6 2.3 7.6 4.0 Delrin/Torlon 177 CB+ 3865 3857 3859 3.8 7.0 2.9/16 6.8 2.8 7.0 1.0 1.7 1.7 CB+ 3865 3857 3856 3.8 7.0 2.9/16 6.8 2.8 7.0 1.6 6.0 1.7 1.5 CB+ 3866 3857 3856 1.0 1.0 1.2 1.0 1.2 1.0 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.0	System A headboard carr		CB+	3882, 3883	System A CB high-load	23/16	99	4 1/8	105	09	Torlon	177	21	1/4	9	-	HSB116
Non-CB 1922, 1901, 1944, 1976, 1977 System A Battear 23/16 56 3 76 40 Delinforforlor 177 Non-CB 1894 1894 58 21/8 56 21/8 54 30 Delinforforlor 177 CB+ 3852 285 385 385 385 385 385 387 18 50 170 177 CB+ 3865 385	System A Battcart 2316 56 3 76 40 Delrin/Torlon 177 21 14 6 HSB116 System A Luft cart 2346 56 2 1/8 54 30 Delrin/Torlon 177 21 14 6 HSB116 System B CB headboard cart 234 70 5 4/6 68 28 Torlon 1526 25/16 8 ————————————————————————————————————	_	Non-CB	1792, 1807	System A headboard car	23/16	26	3 5/8	95	52 x 2	Delrin/Torlon*	177	21	1/4		SB116 x 2	1
OHATOMOTION 1774 54 23/16 56 21/8 54 30 Delrin/Torlon* 177 CB+ 3852 2852 2874 70 53/16 132 60 x 2 Torlon 1526 CB+ 3863 3863 3857,3859,3859,3859 System B CB Intermediate car 234 70 53/16 192 60 x 2 Torlon 1526 CB+ 3863 3857,3859,3859,3859 System B CB Intermediate car 234 70 53/16 192 60 x 7 Torlon 1526 CB+ 3860 1733 60 438 111 48 x 2 Delrin/Torlon* 1526 Non-CB 1793 179 43 70 53/16 97 40 Delrin/Torlon* 1526 Non-CB 1794 1826 173 40 43 70 40 Delrin/Torlon* 1526 Non-CB 1794 182 7 43 70 53/4 70 53/4 70	System R Luff car 23/16 56 21/8 54 30 Delini/Orlon' 177 21 1/4 6 HSB116 System B CB headboard 23/4 70 53/16 68 28 70 60 x 2 Torlon 1526 25 5/16 8 — System B CB Intermediate car 23/4 70 29/16 68 28 Torlon 1526 25 5/16 8 — System B CB Battcar 23/4 70 29/16 68 28 Torlon 1526 25 5/16 8 — System B CB Battcar 23/4 70 4 5/16 132 60 Torlon 1526 25 5/16 8 — 1860 System B Luff randotard car 23/4 70 3 13/16 97 40 Delin/Torlon' 1526 25 5/16 8 HMR2 1860 System C B Battcar 23/4 70 23/4 70 23/4 70 23/4	_	Non-CB	1925, 1901, 1944, 1976, 1977	System A Battcar	23/16	26	3	9/	40	Delrin/Torlon*	177	21	1/4		HSB116	I
CB+ 3862 System B CB headboard 23.4 70 53.76 132 60.8 Torlon 1526 CB+ 3865, 3857, 3859, 3879 System B CB intermediate car 2.34 70 29.76 68 28 Torlon 1526 CB+ 3866, 3857, 3859, 3879 System B CB Battcar 2.34 70 45.76 109 48 Torlon 1526 CB+ 3866, 3857, 3859, 3879 System B CB reef car 2.34 70 45.76 109 48 Torlon 1526 Non-CB 1793 System B Deater car 2.34 70 4.376 17 4.0 Deliri/Torlon* 1526 Non-CB 1794, 1826, 1902, 1946, 1978, 1980 System B Battcar 2.34 70 3.13/6 97 40 Deliri/Torlon* 1526 CB+ 3867 3867 37 3.13/6 87 40 Deliri/Torlon* 1526 CB+ 3871 3867 37 3.13/6 87 37 40 Deliri/Tor	System B CB headboard solution of System B CB headboard at Carlo System B CB intermediate carlo System B CB intermediate carlo System B CB Battcarlo System B Intermediate carlo System C CB headboard carlo System C CB carlo System C CB headboard carlo System C CB not	_	Non-CB	1894	System A luff car	23/16	26	2 1/8	54	30	Delrin/Torlon*	177	51	1/4		HSB116	1
CB+ 3863 System B CB intermediate car 2 3/4 70 2 9/16 68 28 Torlon 1526 CB+ 3866, 3857, 3859, 3879 System B CB Battrar 2 3/4 70 4 5/16 109 48 Torlon 1526 CB+ 3860 3857, 3859, 3879 System B CB Reef car 2 3/4 70 4 5/16 109 48 Torlon 1526 Non-CB 1793 1793 173 6 4 3/8 111 48 x 2 Delrin/Torlon* 1526 Non-CB 1794, 1826, 1902, 1946, 1978, 1980 System B intermediate car 2 3/4 70 3 13/16 97 40 Delrin/Torlon* 1526 Non-CB 1794, 1826, 1902, 1946, 1978, 1980 System B Battcar 2 3/4 70 3 13/16 97 40 Delrin/Torlon* 1526 CB+ 3867 1895 374 70 3 13/16 87 90 2 10/10 57 CB+ 3868, 3869, 3869, 3870, 3872 System C CB reafcar System C CB reafcar	1980 System B CB Bittarmediate car 2 3/4 70 2 9/16 68 28 Torlon 1526 25 5/16 8 ————————————————————————————————————	J	CB+	3852	System B CB headboard	2 3/4	20	5 3/16	132	60 x 2	Torlon	1526	25	2/16	8	1	HMR2 x 2
CB+ 3856, 3857, 3859, 3879 System B CB Battcar 2 34 70 4 5/16 109 48 Torlon 1526 CB+ 3800 System B C Bert car 2 34 70 5 3/16 132 60 Torlon 1526 Non-CB 1793 System B Intermediate car 2 34 70 3 13/16 97 40 Delrin/Torlon* 1526 Non-CB 1794, 1826, 1902, 1946, 1978, 1980 System B Intermediate car 2 34 70 3 13/16 97 40 Delrin/Torlon* 1526 Non-CB 1794, 1826, 1902, 1946, 1978, 1980 System B Intermediate car 2 34 70 3 13/16 97 40 Delrin/Torlon* 1526 CB+ 1895 1895 1895 189 18 3 14 96 34 70 3 13/16 87 90 Delrin/Torlon* 1526 CB+ 1895 1895 189 18 18 18 18 18 18 18 18 18 18	System B CB Battear 2 34 70 4 5/16 180 48 Torlon 1526 25 5/16 8 — System B CB reef car 2 34 70 5 3/16 132 60 Torlon 1526 25 5/16 8 — System B bradboard car 2 34 70 4 3/8 11 48 x 2 Delrin/Torlon* 1526 25 5/16 8 HMR2 x 2 180 System B attract 2 34 70 3 13/16 97 40 Delrin/Torlon* 1526 25 5/16 8 HMR2 x 2 180 System C B battear 2 34 70 2 34 70 90 Delrin/Torlon* 1526 25 5/16 8 HMR2 x 2 System C B battear 3 5/16 85 9 1/8 23 90 x 2 Torlon 547 25 3/8 10 HBB1 x 2 System C B Battear 3 5/16 85 9 1/8 23 10 rlon 547 25 3/8 </td <td></td> <td>CB+</td> <td>3863</td> <td>System B CB intermediate car</td> <td>2 3/4</td> <td>20</td> <td>2 9/16</td> <td>89</td> <td>28</td> <td>Torlon</td> <td>1526</td> <td>25</td> <td>5/16</td> <td>8</td> <td>1</td> <td>HMR2</td>		CB+	3863	System B CB intermediate car	2 3/4	20	2 9/16	89	28	Torlon	1526	25	5/16	8	1	HMR2
QB+ 3860 System B CB reef car 2 3/4 70 5 3/16 132 60 Torlon 1526 Non-CB 1793 5ystem B headboard car 2 3/4 70 4 3/8 111 48 x 2 Delrin/Torlon* 1526 Non-CB 1979 1794, 1826, 1902, 1946, 1978, 1980 System B intermediate car 2 3/4 70 3 13/16 97 40 Delrin/Torlon* 1526 Non-CB 1895 97 170 3 13/16 97 40 Delrin/Torlon* 1526 CB+ 3867 1895 97 70 3 13/16 97 40 Delrin/Torlon* 1526 CB+ 3867 1895 387 96 97 9 100 <	System B CB reaf car 2 3/4 70 5 3/16 132 60 Torlin 1526 25 5/16 8 — System B headboard car 2 3/4 70 4 3/8 111 48 x 2 Delrin/Torlon* 1526 25 5/16 8 HMR2 x 2 1880 System B intermediate car 2 3/4 70 3 13/16 97 40 Delrin/Torlon* 1526 25 5/16 8 HMR2 x 2 1880 System B Battcar 2 3/4 70 2 3/4 70 2 3/4 70 80 Delrin/Torlon* 1526 25 5/16 8 HMR2 x 2 1880 System C Beatcar 3 5/16 85 9 1/8 23 90 x 2 Torlon 5/7 25 3/8 10		CB+	3856, 3857, 3859, 3879	System B CB Battcar	2 3/4	20	4 5/16	109	48	Torlon	1526	25	9/16	8	_	HMR2
Non-CB 1793 System B headboard car 2.34 70 4.3/B 111 48.x 2 Delrin/Torlon* 1526 Non-CB 1979 System B intermediate car 2.34 70 313/16 97 40 Delrin/Torlon* 1526 Non-CB 1794, 1826, 1902, 1946, 1978, 1980 System B Battcar 2.34 70 313/16 97 40 Delrin/Torlon* 1526 CB+ 1895 1895 1895 91/8 23 90 2 40 Delrin/Torlon* 1526 CB+ 3867 1895 91/8 23 90 2 40 Delrin/Torlon* 1526 CB+ 3867 3867 85 91/8 23 90 2 47 70 30 Delrin/Torlon* 1526 CB+ 3867 3863 3869 3870 85 91/8 34 10rlon 547 CB+ 3874 3874 85 51/2 85 91/8 51/2	1890 System B headboard car 2 34 70 4 3/8 111 48 x 2 Delrin/Torlon* 1526 25 5/16 8 HMR2 x 2 1890 System B intermediate car 2 34 70 3 13/16 97 40 Delrin/Torlon* 1526 25 5/16 8 HMR2 x 2 1890 System B Battcar 2 34 70 3 13/16 97 40 Delrin/Torlon* 1526 25 5/16 8 HMR2 1890 System C B hattcar 2 3/4 70 2 3/4 70 2 3/4 70 3 4 70 90 Delrin/Torlon* 1526 25 5/16 8 HMR2 180 System C B hattcar 3 5/16 85 3 1/8 36 3 10 10 10 -1 10 -1 10 -1 10 -1 10 -1 10 10 -1 10 10 -1 -1 -1 10 -1 -1 -1		CB+	3860	System B CB reef car	2 3/4	20	5 3/16	132	09	Torlon	1526	22	2/16	80	I	HMR2
1979 System B intermediate car 2.34 70 313/16 97 40 Delrin/Torlon* 1526 1794, 1826, 1902, 1946, 1978, 1980 System B Battcar 2.34 70 313/16 97 40 Delrin/Torlon* 1526 1895 System C Battcar 2.34 70 2.3/4 70 2.3/4 70 30 Delrin/Torlon* 1526 3867 System C CB headboard 3.5/16 85 9.1/8 232 90 x 2 Torlon 547 3868, 3869, 3870, 3872 System C CB intermediate car 3.5/16 85 5.3/8 136 50 Torlon 547 3873 System C CB Battcar 3.5/16 85 5.3/8 136 50 Torlon 547 1782 System C CB reef car 3.5/16 85 5.1/2 140 52 x 2 Torlon 547 1782 System C Battcar 3.5/16 85 4.3/4 121 44 Torlon 547 1785 System C Battcar	1980 System B intermediate car 2 3/4 70 3 13/16 97 40 Delrin/Torlon* 1526 25 5/16 8 HMR2 1980 System B Battcar 2 3/4 70 3 13/16 97 40 Delrin/Torlon* 1526 25 5/16 8 HMR2 System C B badtcar 3 5/16 85 9 1/8 23 90 x Torlon 547 25 3/8 10 — System C CB neadboard car 3 5/16 85 9 1/8 23 90 x Torlon 547 25 3/8 10 — System C CB neadcar 3 5/16 85 5 1/8 136 50 Torlon 547 25 3/8 10 — System C Battcar 3 5/16 85 5 1/2 140 52 x Torlon 547 25 3/8 10 HBB1 x 2 1903 System C battcar 3 5/16 85 4 3/4 121 44 Torlon 547		Non-CB	1793	System B headboard car	2 3/4	20	4 3/8	Ξ	48 x 2	Delrin/Torlon*	1526	22	2/16		IMR2 x 2	I
1794, 1826, 1902, 1946, 1978, 1980 System B Battcar 2 3/4 70 3 13/16 97 40 Delrin/Torlon* 1526 1885 System C B headboard 2 3/4 70 2 3/4 70 30 Delrin/Torlon* 1526 3867 3867 86 9 1/8 23 90 x 2 Torlon 547 3871 85 3 5/16 85 3 3/4 96 34 Torlon 547 3863, 3869, 3870, 3872 System C CB intermediate car 3 5/16 85 5 3/8 136 50 Torlon 547 3873 System C CB Battcar 3 5/16 85 5 1/8 136 50 Torlon 547 1782 System C De Battcar 3 5/16 85 5 1/2 140 52 x 2 Torlon 547 1782 System C De Battcar 3 5/16 85 5 1/2 140 50 x 2 Torlon 547 1782 System C De Battcar 3 5/16 85 4 3/4 121 44<	1980 System B Battcar 2 3/4 70 3 13/16 97 40 Delrin/Torlon* 1526 25 5/16 8 HMR2 System C B headboard 2 3/4 70 2 3/4 70 2 3/4 70 90 x 2 Torlon 547 25 5/16 8 HMR2 System C B headboard car 3 5/16 85 3 3/4 96 34 10/10n 547 25 3/8 10 — System C B attcar 3 5/16 85 5 3/8 136 50 10/10n 547 25 3/8 10 — System C B attcar 3 5/16 85 5 1/2 140 50x 2 10/10n 547 25 3/8 10 — System C Battcar 3 5/16 85 5 1/2 140 70x1on 547 25 3/8 10 HBB1 x 2 1903 System C battcar 3 5/16 85 4 3/4 121 44 70x1on 547 25	-	Non-CB	1979	System B intermediate car	2 3/4	70	3 13/16	97	40	Delrin/Torlon*	1526	25	2/16	∞	HMR2	ı
1895 System B luff car 2,3/4 70 23/4 70 23/4 70 30 Delrin/Torlon* 1526 3867 3867 3867 85 91/8 232 90 x 2 Torlon* 1576 3871 3873 3869, 3870, 3872 System C CB Battcar 35/16 85 53/8 136 50 Torlon 547 3873 System C CB Battcar 35/16 85 51/8 136 50 Torlon 547 1782 System C Battcar 35/16 85 51/2 140 52 x 2 Torlon 547 1784 1795, 1829, 1829, 1903 System C Battcar 35/16 85 43/4 121 44 Torlon 547 1785 System C Battcar 35/16 85 43/4 121 44 Torlon 547 1785 System C Battcar 35/16 85 4 102 36 100 100 100 100 100 100 100 <td>System B luff car 2 3/4 70 2 3/4 70 9 3/4 70 9 3/4 70 9 3/4 70 9 3/4 70 90 beltin/Torlon* 1526 25 5/16 8 14/8 232 90x2 Torlon 547 25 3/8 10 — System C B attract 3 5/16 85 5 3/8 136 50 Torlon 547 25 3/8 10 — System C B attract 3 5/16 85 5 1/8 50 1010n 547 25 3/8 10 — System C B attract 3 5/16 85 5 1/2 140 52x 2 Torlon 547 25 3/8 10 — 1903 System C battract 3 5/16 85 4 3/4 121 44 Torlon 547 25 3/8 10 HBB1 x 2 1903 System C luft car 3 5/16 85 4 102 36 7 25 3/8 10 H</td> <td>_</td> <td>Non-CB</td> <td>1794, 1826, 1902, 1946, 1978, 1980</td> <td>System B Battcar</td> <td>2 3/4</td> <td>20</td> <td>3 13/16</td> <td>26</td> <td>40</td> <td>Delrin/Torlon*</td> <td>1526</td> <td>25</td> <td>2/16</td> <td>8</td> <td>HMR2</td> <td>I</td>	System B luff car 2 3/4 70 2 3/4 70 9 3/4 70 9 3/4 70 9 3/4 70 9 3/4 70 90 beltin/Torlon* 1526 25 5/16 8 14/8 232 90x2 Torlon 547 25 3/8 10 — System C B attract 3 5/16 85 5 3/8 136 50 Torlon 547 25 3/8 10 — System C B attract 3 5/16 85 5 1/8 50 1010n 547 25 3/8 10 — System C B attract 3 5/16 85 5 1/2 140 52x 2 Torlon 547 25 3/8 10 — 1903 System C battract 3 5/16 85 4 3/4 121 44 Torlon 547 25 3/8 10 HBB1 x 2 1903 System C luft car 3 5/16 85 4 102 36 7 25 3/8 10 H	_	Non-CB	1794, 1826, 1902, 1946, 1978, 1980	System B Battcar	2 3/4	20	3 13/16	26	40	Delrin/Torlon*	1526	25	2/16	8	HMR2	I
3867 System C CB headboard 3 5/16 85 91/8 232 90 x 2 Torlon 547 3871 3873 96 34 10 no 547 547 3868, 3869, 3870, 3872 5ystem C CB intermediate car 3 5/16 85 53/8 136 50 Torlon 547 3873 5ystem C CB reef car 3 5/16 85 9 1/8 231 90 Torlon 547 1782 5ystem C bactor 85/16 85 5 1/2 140 52 x 2 Torlon 547 1784 1795, 1827, 1828, 1829, 1903 5ystem C Battcar 3 5/16 85 4 3/4 121 44 Torlon 547 1785 5ystem C Battcar 5ystem C Battcar 3 5/16 85 4 102 36 7 5/2 7 5/2	System C CB headboard 35/16 85 91/8 232 90 x 2 Torlon 547 25 3/8 10 — System C CB Battcar 35/16 85 3/4 96 34 Torlon 547 25 3/8 10 — System C Battcar 35/16 85 5/8 136 50 Torlon 547 25 3/8 10 — 1903 System C Battcar 35/16 85 5/12 140 52 x 2 Torlon 547 25 3/8 10 — 1903 System C Battcar 35/16 85 4/4 121 44 Torlon 547 25 3/8 10 HBB1 x 2 1903 System C Battcar 35/16 85 4 102 36 10rlon 547 25 3/8 10 HBB1 x 2 System C bitch-load luff car 35/16 85 4 102 36 10rlon 547 25 3/8	-	Non-CB	1895	System B luff car	2 3/4	20	2 3/4	70	30	Delrin/Torlon*	1526	25	2/16	80	HMR2	I
3871 System C CB intermediate car 3 5/16 85 33/4 96 34 Torlon 547 3868, 3869, 3870, 3872 System C CB Battcar 3 5/16 85 5 3/8 136 50 Torlon 547 3873 System C CB reef car 3 5/16 85 9 1/8 23 1 90 Torlon 547 1782 System C beadboard car 3 5/16 85 5 1/2 140 52 x 2 Torlon 547 1784 1795, 1827, 1828, 1829, 1903 System C battcar 3 5/16 85 4 3/4 121 44 Torlon 547 3 5/16 System C battcar 3 5/16 85 4 102 36 7 100n 547	System C CB intermediate car 3 5/16 85 3 3/4 96 34 Torlon 547 25 3/8 10 — System C B Battcar 3 5/16 85 5 3/8 136 50 Torlon 547 25 3/8 10 — 1903 System C Battcar 3 5/16 85 5 1/2 140 52 x 2 Torlon 547 25 3/8 10 HBB1 x 2 1903 System C Battcar 3 5/16 85 4 3/4 121 44 Torlon 547 25 3/8 10 HBB1 x 2 1903 System C Battcar 3 5/16 85 4 102 36 Torlon 547 25 3/8 10 HBB1 x 2 System C light-load luff car 3 5/16 85 4 102 36 Torlon 547 25 3/8 10 HBB1 Delinin is a registered trademark of E. I. du Pont of the Nemours and Company or its affiliates. Torlon is a registered trademark of Solvay Advanced Polymers L. L	J	CB+	3867	System C CB headboard	3 5/16	82	9 1/8	232	90 × 2	Torlon	547	52	3/8	10	ı	HBB25 x 2
3868, 3869, 3870, 3872 System C CB Battcar 35/16 85 53/8 136 50 Torlon 547 3873 System C Beat car 35/16 85 91/8 231 90 Torlon 547 1782 System C beadboard car 35/16 85 51/2 140 52 x 2 Torlon 547 1784, 1795, 1827, 1828, 1829, 1903 System C battcar 35/16 85 4 121 44 Torlon 547 1785 System C luff car System C luff car 35/16 85 4 102 36 Torlon 547	System C CB Battcar 3 5/16 85 5 3/8 136 50 Torlon 547 25 3/8 10 — System C B reef car 3 5/16 85 9 1/8 231 90 Torlon 547 25 3/8 10 — 1903 System C battcar 3 5/16 85 4 3/4 121 44 Torlon 547 25 3/8 10 HBB1 x 2 System C battcar 3 5/16 85 4 102 36 Torlon 547 25 3/8 10 HBB1 x 2 System C bigh-load luff car 3 5/16 85 4 102 36 Torlon 547 25 3/8 10 HBB1 Delini is a registered trademark of E. I. du Pont de Nemours and Company or its affliates. Torlon is a registered trademark of Solvay Advanced Polymers L. L. C.	٦	CB+	3871	System C CB intermediate car	3 5/16	82	3 3/4	96	34	Torlon	547	25	3/8	10	ı	HBB1
3873 System C DB reef car 3 5/16 85 91/8 231 90 Torlon 547 1782 System C headboard car 3 5/16 85 5 1/2 140 52 x 2 Torlon 547 1784, 1795, 1827, 1828, 1829, 1903 System C battcar 3 5/16 85 4 3/4 121 44 Torlon 547 1785 System C luff car System C luff car 3 5/16 85 4 102 36 Torlon 547	System C Breef car 3 5/16 85 9 1/8 231 90 Torlon 547 25 3/8 10 — 1903 System C headboard car 3 5/16 85 5 1/2 140 52 x 2 Torlon 547 25 3/8 10 HBB1 x 2 1903 System C buff car 3 5/16 85 4 3/4 121 44 Torlon 547 25 3/8 10 HBB1 System C bigh-load buff car 3 5/16 85 4 102 36 Torlon 547 25 3/8 10 HBB1 Delini is a registered trademark of E. I. du Pont de Nemours and Company or its affliates. Torlon is a registered trademark of Solvay Advanced Polymers L.L.C.		CB+	3868, 3869, 3870, 3872	System C CB Battcar	3 5/16	92	5 3/8	136	20	Torlon	547	25	3/8	10	ı	HBB1
1782 System C headboard car 3 \$/16 85 5 1/2 140 52 x 2 Torlon 547 1784, 1795, 1827, 1828, 1829, 1903 System C Battcar 3 5/16 85 4 3/4 121 44 Torlon 547 1786 System C luff car 3 5/16 85 4 102 36 Torlon 547	System C headboard car 3 5/16 85 5 1/2 140 55 1903 System C Battcar 3 5/16 85 4 3/4 121 System C Iuff car 3 5/16 85 4 102 System C high-load luff car 3 5/16 85 4 102 Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.		CB+	3873	System C CB reef car	3 5/16	92	9 1/8	231	06	Torlon	547	22	3/8	10	ı	HBB25
1784, 1795, 1827, 1828, 1829, 1903 System C Battcar 3 5/16 85 4 3/4 121 44 Torlon 547 1785 System C luff car 3 5/16 85 4 102 36 Torlon 547	1903 System C Battcar 3 5/16 85 4 3/4 121 System C luff car 3 5/16 85 4 102 System C high-load luff car 3 5/16 85 4 102 Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.	_	Non-CB	1782	System C headboard car	3 5/16	92	5 1/2	140	52 x 2	Torlon	547	25	3/8		1BB1 x 2	-
1785 System Cluff car 35/16 85 4 102 36 Torlon 547	System C luff car 3 5/16 85 4 102 System C high-load luff car 3 5/16 85 4 102 Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.	-	Non-CB	1784, 1795, 1827, 1828, 1829, 1903		3 5/16	92	4 3/4	121	4	Torlon	547	22	3/8	10	HBB1	1
470E111	System C high-load luff car 3 5/16 85 4 102 Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.	-	Non-CB	1785	System C luff car	3 5/16	82	4	102	36	Torlon	547	22	3/8	10	HBB1	I
1/85HL System C nigh-load luft car 35/16 85 4 102 36 lorion 54/	Delrin is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates.	Ī	Non-CB	1785HL	System C high-load luff car	3 5/16	82	4	102	36	Torlon	547	25	3/8	10	HBB1	I

Typical Rigging Breaking Loads*

Type	Type 316 1 x 19 (25) Compacted Strand, example Dyform® wire rigging	9 (25) Coi Jyform® w	mpacted : rire riggin	Strand, g		уре 316	Type 316 1 x 19* Stain		less Wire Rope	e e	Ž	tronic® 50 ; exal	50 Stainless Rod example Navtec®	Nitronic® 50 Stainless Rod Rigging, example Navtec®	ng,	Dacr	Dacron® Double Braid Rope	e Braid	Rope	Vectran® C	Vectran® Core Rope w/Dacron Cover‡	cron Cover
Size	Breaking load	g Size		Breaking load	Size	<u> </u>	Breaking load	Size	Brea lo	Breaking Ioad		Size		Breaking load		Bre Size Ic	Breaking Ioad	Size	Breaking load	Size	Breaking load	king Id
Ë	lb k	kg mm	dl r	kg	i	a	kg	ш	ql	kg		in	mm	ql	kg	in lb	kg	mm	lb kg	i	ql	kg
3/16	4928 22	2235 5	5380	2440	3/16	3960	1800	3/8	14500	6580	-4	0.172	4.37	4700	2130	1/4 1800	815	9	1800 815	3/16	634	288
1/4	8844 40	4011 6	7828	3550	7/32	5445	2470	1/2	25680	11650	9-	0.198	5.03	6300	2860	5/16 2800	1270	7	2800 1270	1/4	1179	535
9/32	10802 48	4899 7	10827	4910	1/4	7090	3220	1	1	1	φ	0.225	5.72	8200	3720	3/8 3750	1700	6	3750 1700	5/16	1677	761
2/16	13530 61	6136 8	13561	6150		ype 302	Type 302 1 X 19* Stain		ess Wire Rope	eu	-10	0.250	6.35	10300	4670 7	7/16 5500	2490	=	5500 2490	3/8	2630	1193
3/8	19272 87	8740 10	21544	9770	<u>=</u>	으	ā	.⊑	₽	kg	-12	0.281	7.14	12500	5670	1/2 7000	3175	12	7000 3175	2/16	3174	1439
2/16	26620 120	12072 11	26620	12072	1/16	200	227	9/32	10300	4671	-15	0.296	7.52 1	14250	6460	9/16 10000	4535	14	10000 4535	1/2	3809	1727
1/2	34833 157	15797 14	42460	19256	3/32	1200	544	2/16	12500	5669	-17	0.33	8.38	17500	7940	5/8 14000	6350	15 1	14000 6350		V12 Vectran	
9/16	42460 192	19256 16	56320	25541	1/8	2100	952	3/8	17500	7936	-22	0.375	9.53	22500	10200	3/4 16000	7250	19 1	16000 7250	.⊑	a	kg
2/8	56320 25	25541 19	70400	31926	5/35	3300	1497	2/16	23400	10612	-30	0.437	11.1	30000	13600	7/8 25000	25000 11340	22 2	25000 11340	1/8	2000	206
3/4	70400 319	31926 —	ı	I	3/16	4700	2131	1/2	29700	13469	-40	0.500	12.7	38000	17200	100 Core	100% Spectra®/Dyneema® Core Rope w/Dacron Cover	®/Dynee Jacron C	ma [®] over	5/32	3500	1587
Type	Type 316 1 x 19** Stainless Wire Rope	9** Stain	lless Wire	Rope	7/32	6300	2857	9/16	36500	16553	-48	0.562	14.27 4	48000	21800	Size		Breaking load	ing -	3/16	4750	2154
E	a k	kg mm	=	ķ	1/4	8200	3719	2/8	44000	19954	-60	0.660	16.76	00009	27200	.⊑	a		kg	1/4	7800	3537
2	706 32	320 9	12944	5870		ype 316	Type 316 7 x 19** Stair	Stainles	nless Wire Rope	90	9/-	0.705	17.91 7	26000	34500	1/4	5100	0	2313	5/16	11500	5215
2.5	1103 50	500 9.53	3 14509	6580	.⊑	₽	ķ	E	₽	kg	-91	0.768	19.51	00006	40800	5/16	6200	0	2812	3/8	16800	7618
က	1588 72	720 10	15987	7250	3/16	2830	1285	က	1120	510	-115	0.875	22.23 1	115000	52200	3/8	0086	0	4444		S12 Spectra	
4	2822 12	1280 11	19338	8770	7/32	3865	1750	4	2130	970	-150	1.000	25.40 1	150000 (00089	7/16	14000	00	6349	Ë	qI	kg
4.76	3969 18	1800 12	22933	10400	1/4	5040	2280	5	3130	1420	-170	1.066	27.08	170000	77100	1/2	21000	00	9524	1/8	2100	952
2	4410 20	2000 12.7	7 25689	11650	3/8	11350	5150	(8-) 9	4490	2040	-195	1.125	28.58	190000	86200					5/35	I	I
5.56	5447 24	2470 14	31268	14180	1/2	20165	5 9140	7 (-12)	6120	2780	-220	1.191	30.25 2	217000 8	98400					3/16	2800	2630
9	6351 28	2880 16	40926	18560	١	I	I	80	8000	3630	-260	1.313	33.35 2	260000 1	118000					1/4	0086	4443
6.35	7100 32	3220 19	47674	21620	I	1	I	10	12500	2670	-320	1.500	38.10 3	320000 1	145000					5/16	13300	6032
7	7828 35	3550 22	64101	29070	Ι	I	I	12	17990	8160										3/8	19000	8617
80	10232 46	4640 26	89526	40600	I	1	I	14	24470	11100												
						I	1	16	29980	13600												
* Locion T	*Typical American wire		**Tvoion	in acodo	+ A+	+Brosking l	ack year bool	>	indohy by manufacture	footurer												

[#]Breaking load may vary widely by manufacturer. * *Typical European wire. *Typical American wire.

Dacron is a registered trademark of E. I. du Pont de Nemours and Company or its affiliates. Dyform is a registered trademark of Bridon International Ltd.
Dyneema is a registered trademark of DSM IP Assets B.V. L.L.C.
Navtec is a registered trademark of Lewmar, Ltd.
Spectra is a registered trademark of AK Steel Corporation.
Spectra is a registered trademark of Honewwell International, Inc.
Vectran is a registered trademark of Kuraray Co., Ltd.


Loading Formulas

Block Loading vs Angle of Deflection

Load on a block is a combination of the load on the line passing through the block, plus a block-loading factor, which is determined by the angle by which the block turns the sheet. For example, a footblock that turns a sheet 180 degrees will see a load equal to twice the load on the sheet. A deck organizer, which turns a halyard only 30 degrees, will see just 52 percent of the load on the halyard.

Boat Type

Most load formulas assume a medium displacement monohull, but you can easily correct for other boat types. Multihulls and boats with canting keels or water ballast have great form stability and speed and will often carry sails very high in the apparent wind speed, so calculations must be done with this wind speed in mind. ULDBs are typically tender and often change sails or reef guite early, so loading may be done at relatively low wind speeds. For example, a modern trimaran may carry its blade jib in 25 knots of wind at speeds over 15 knots for an apparent wind of nearly 40 knots, whereas a ULDB will probably remove its #1 genoa at about 15 knots of apparent wind.

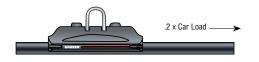
Angle of deflection	Load factor	Angle of deflection	Load factor	Angle of deflection	Load factor
30°	52%	90°	141%	150°	193%
45°	76%	105°	159%	160°	197%
60°	100%	120°	173%	180°	200%
75°	122%	135°	185%		

Genoa System Loading

Because wind speed is squared, it is the most important variable and can greatly influence loading. Wind speed (the apparent wind) should be calculated for the specific sail being analyzed. For example, the #1 genoa on a 7 m (25') boat might only be carried in 15 knots of wind. while the #3 blade on a Maxi-boat could well be carried in 40 knots.

To calculate loading on a genoa lead car, multiply sheet load by the load factor of the sheet. Most #1 genoas will deflect about 45 degrees, while a #3 genoa may deflect 75 degrees or more.

Lead car adjuster tackle load is dependent on the angle of deflection of the sheet in the lead car, but is generally assumed to be 0.3 of lead car load when deflection is 45 degrees and .05 of lead car load when deflection is 60 degrees.

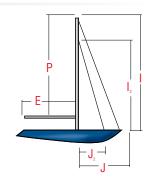

	GENOA SH	IEET LO	AD
	English		Metric
SL	= SA x V ² x 0.00431		$SL = SA \times V^2 \times 0.02104$
SL	Sheet load in pounds	SL	Sheet load in kilograms
SA	Sail area in square feet	SA	Sail area in square meters
V	Wind speed in knots	V	Wind speed in knots

Formulas are for typical cruising monohulls with fixed keel and Dacron® sails, sheets, and halyards. For all other types, please contact Harken for technical assistance in calculating loads.

Mainsheet System Loading

The formula for mainsheet loading is not as widely accepted as that for genoa sheet loads and should only be used as a rough guide for offshore boats from 9 - 18 m (30 - 60').

Traveler car adjuster load is generally considered to be 0.2 times car load.


MAINSHEET LOAD **English** Metric $ML = E^2 \times P^2 \times 0.00431 \times V^2$ $ML = E^2 \times P^2 \times 0.02104 \times V^2$ $(\sqrt{P^2 + E^2}) \times (E - X)$ $(\sqrt{P^2 + E^2}) \times (E - X)$ Mainsheet load in pounds Mainsheet load in kilograms Foot length of main in feet Foot length of main in meters Luff length of main in feet Luff length of main in meters ٧ Wind speed in knots Wind speed in knots Distance from aft end of boom to Distance from aft end of boom to mainsheet attachment point in feet mainsheet attachment point in meters

Formulas are for typical cruising monohulls with fixed keel and Dacron sails, sheets, and halyards. Assumes standard roach of 7.5%. For large roach sails such as "flattops" multiply calculated load by the percentage of the mainsail roach. If a sail has 25% roach, multiply the calculated load by 1.25. For all other types, please contact Harken for technical assistance in calculating loads.

Rig Dimensions

The following abbreviations are often used to describe various measurements on a sailboat. Precise technical definitions exist for each abbreviation, but the following is a list of simple descriptions:

LOA	Length overall - overall tip-to-tip length of the boat	 2	Height of staysail halyard above deck
LWL	Length waterline - length of waterline of the boat		Base of the foretriangle measured from the front of the
LVVL	Length waterline - length of waterline of the boat	J	mast to the intersection of the forestay and deck
DWL	Design waterline - theoretical waterline length of boat		Base of staysail triangle
DVVL	as opposed to LWL, which is actual waterline length	J ₂	base of staysall trialigie
BMX	Beam maximum - width of the boat at the widest point	Р	Luff length of the mainsail
BWL	Beam waterline - widest beam of boat at the waterline	Е	Foot length of the mainsail
	Height of the foretriangle measured from the top of the	I D	Chartast distance from handstoy to the slow of the iib
	highest sheave to the sheerline	LP	Shortest distance from headstay to the clew of the jib
			'

Dacron is a registered trademark of F. L. du Pont de Nemours and Company or its affiliates

IIIAOV				
All blocks (see "BLOCKS")	29 mm	18-19	Hexa-Cat Bases	37
All cars (see "TRAVELERS")	40 mm18, 20-2	1, 25-26, 29	Hexaratchets18, 24	
All winches (see "WINCHES")	57 mm1		Hook-In Halyard	
,	75 mm		HTE Ratchamatic	
A	Clew Block Assembly		Lockoff Blocks	
Accessories 69-70, 73, 100, 102, 105, 107,	Fiddle		Black Magic Footblocks	57
110, 113, 115, 117, 157, 189, 219-221, 245	Fixed Head		Element Footblocks	
Access Rail128-129	HTE Ratchamatic		Loop16, 18, 52	
Addresses	Loop		Low-load Black Magic Air Blocks	
Athwartship Systems, Custom123-124	Quad		Megayacht	
Alliwartship Systems, Gustom125-124	Power3 Ratchet		Mastbase Lead	
В	Ratchamatic			
_			Mastcollar	
Backstay Adjuster, Hydraulic230	Ratchet		Micro	
Backstay Systems Drawings267	T2 Soft Attach		Midrange	
Ball Bearing Replacement Chart271-273	Carbon Fiber		Optimist Halyard	
Ball Bearing Winch Handles220	Classic		Over-the-Top	
Bases	Midrange		Padeye Blocks	
Ball and Socket72	Small Boat	32-37	Pivoting Lead Block	19, 20-21
Cam71	Wire	41	Power3 Ratchets	
Custom Removable Padeyes 90	Cheek		Protexit Blocks	31
Eyestraps84		Big Boat	Quadruples	21-23
Padeyes88	46-48. 57-59	Ü	Radial Vang	100
Stand-Up72		Carbo	Ratchets	
Swivel	19-21, 22-23, 25-28		40 mm Carbo	18 25-26
		Classic	57 mm Carbo	,
Batten Traveler Systems	34-35, 35, 40-41	Olassio	75 mm Carbo 24	
Battcars		Flamaant		
Bearings, Replacement271-273		Element	Cheek	
Below-Deck Furling161	46-48	FOR	Doubles	
Bends, Track125		ESP	Fiddles	
Big Boat Travelers 113-118, 120, 123-124	58		Flip-Flop	
Block Covers56		Ratchet	Hexa-Cat Bases	
Block Socks 56	25, 27		Little Hexa-Cat Bases	
Bolt-Down Fairleads90	Clew Block Assembly	19	Midrange Hexaratchet	40
Boom Vangs, Hydraulic236-237	Crossover		Ratchamatic18, 24	
Breaking Strengths, Rigging274	Cruising ESP		Soft-Attach	
Bullseye Fairleads71, 73	Sheaves		T2	
Duliscyc Fairleaus71, 75	Stainless Steel		Triples	
BLOCKS	Dinghy		Running Backstay	20, 20, 10
	Doubles18-19, 20-23		Air Runners	56
16 mm	35-36, 38, 40, 46-48, 5		Covers	
Air Blocks	Electric Footblock		Small Boat	
Air Runners56				,
Anti-Capsize32-33	Element		16 mm	
Backstay, Runners56	Exit Blocks 31-3	3, 36-37, 41	Carbo Air Blocks	
Big Boat42-63	Fiddles		Cheek 19-20, 22, 25, 27, 32	
Black Magic Air Blocks50-57	Big Boat4	3-44, 53, 58	Classic	
Carbon Fiber62-63	Carbo	29	Deck Organizers	
Custom59, 61	Classic	33, 40	Exit31-33	
Element45-48	Element		Fiddle	
FlatWinder49	Midrange Classic	40	Fly	16
Flip-Flop61	Small Boat Classic	33	HTE Ratchamatic	24
Footblock	Fine-Tune Systems		Micro	33
Loop 52-55, 62-64	Fixed-Head 19-2		Pivoting Lead Block	19. 21
	Fixed-Lead		Power3 Ratchet	24
Low-Load	FlatWinder		Protexit	
Mastbase58-61	Flip-Flop		Ratchet	
Megayacht59, 64	Fly Blocks		Soft-Attach	
Over-the-Top61	•	10		
Powered49	Footblocks	F0	Swivel	
Runner56	Black Magic		Through-Deck 31-33	o, 30-37, 47
Snatch 64	Electric		Traveler	
Spriddle53	Element		Upright Lead	
Stainless Steel58-59	Lock-Off4		V-Jam	
	Stainless Steel	58-59	Wire	35-36, 41
Stand-Up	Forkhead		Snatch	
Stand-Up			0 (1 0 1 1 40 40 54	0 EE 60 6/
Swivel46-48, 52-55, 58-59	16 mm	31	Soft Attach 16, 18, 52	Z-DD, DZ-D4
Swivel46-48, 52-55, 58-59 Teardrop57, 58-59			Soft Attach 16, 18, 52 Black Magic	
Swivel46-48, 52-55, 58-59 Teardrop57, 58-59 V62-63	16 mm Micro	33	Black Magic	52-57
Swivel46-48, 52-55, 58-59 Teardrop57, 58-59	16 mm	33 62-63		52-57 18

BLOCKS (continued)
Ratchamatic21
V
Spriddle53
Stainless Steel
16 mm32 Big Boat58-59
Cruising ESP58
Micro33
Stand-Up59 Wire41, 103
Stand-Up19-20, 46-48, 52-55, 59
Swivel19-29, 32-33, 35, 37,
40, 46-48, 52-55, 58-59 T2 Soft-Attach 18
Ratchets
Singles21
Teardrop
Through-Deck 31-33, 36-37, 41 Traveler
Triples
35, 40, 46-48, 52
Triples with Ratchets & Cams Carbo26, 28
Midrange 40
Trunnion Snatch Blocks
Turning Blocks57 Two-Speed Mainsheets260
Upright Leads33, 35-37
V Block62-63
V-Jam33 Vang Block, Radial Traveler103
Wire41, 103
Wire Bullets35-36
C
Cam Cleat Adapter Plate69-70
Cam Cleats66-68
Aluminum
Stainless Steel
Carbo Blocks (see "BLOCKS")
Carbo OneTouch Locking Winch Handle. 219
Carbo Racing Foil
Car Controls102, 107, 113-114
Cars (see "TRAVELERS") Chafe Guard, Carbo Racing Foil158
Circuit Breakers204
Complementary Hardware65-91
Control Blocks, Traveler99, 108, 115
Control Boxes, Electric Winch204 Couplers103, 115
Curved Track123
Custom Products59, 61, 88, 91,117, 119-122, 125, 140-147
Cylinders, Hydraulic 230-234, 236-238
_
Dock Ownerizone
Deck Organizers Big Boat58, 79
Cruising ESP58
Midrange78
Small Boat
Digital System Switch205
Dinghy

Blocks Clew Hook	
Jib Leads	
Distributors	
DN Adapter	
Drilling Guide	
	270
E	
Electric Winches193, 1	97-199
202, 203, 2	206-211
End Controls, Self-Tacking Jibs	107
End Controls, Traveler102, 107, 1	113-114
Endstops98, 100, 10	05, 111,
119-120, 124, 1	126-127
Extreme Angle Fairlead	68-70
Eyestraps69	9-70, 84
r.	
F	
Fairleads68-70, 73	, 84, 90
Fast Release Fairleads	
Filters, Hydraulic	245
Fine-Tune Systems2	
Flairleads	/1-/2
Foil, Carbo Racing	158
Folding Padeyes	85
Formulas, Load	2/0
Furling	92 190
Gennaker161, 1	03, 109 164-168
Hydraulic	184-188
Lead Block Kits	183
MKIV Jib Reefing & Furling182	184-188
Powered Furling	180-188
Reflex Free Flying Asymmetric.	
162-1	
Reflex Free Flying Code Zero1	166-168
Small Boat1	159-161
Small Boat Underdeck	159
Snap Shackles	189
Staysail	161
Systems	
Unit 0 (MKIV)	174
Unit 0 (MKIV Underdeck)	180
Unit 1 (MKIV)	1/4
Unit 1 (MKIV Underdeck)	
Unit 1 (Reflex Asymmetric).	
Unit 1 (Reflex Code Zero) Unit 2 (MKIV)	177
Unit 2 (MKIV) Unit 2 (MKIV Underdeck)	181
Unit 2 (Reflex Asymmetric).	165
Unit 2 (Reflex Code Zero)	166
Unit 3 (MKIV)	
Unit 3 (MKIV Underdeck)	181
Unit 3 (Reflex)	167
Unit 4 (MKIV)	177
Underdeck159, 1	178-181
C	
G	
Gennaker Furling161-1 Genoa Lead Cars (see "TRAVELERS"	65, 167
Genoa Lead Cars (see "TRAVELERS")
Grand Prix Jib Fairleads	
Grease, Winch	221
Gross-Trim/Fine-Tune Systems2	200-260
H	
Halyard Restrainers	100
Halyard Sheaves	
Halyard Tensioner	/ / Q1

Hand	Holdles, Winch	.219-	220
	Assemblies, Hydraulic		
Hydr	aulic Furling	.184-	188
	aulic Power Units		
	aulic Winches193,		
	203, aulics		
пуш	Accessories		
	Backstay Adjuster, Integral	.270	230
	Boom Vangs		
	Cylinders 230-234,	236-	238
	Cylinder Rod End Blocks		235
	Double-Pull Cylinders		
	Filters		
	Grand Prix Cylinders		
	Hose Assemblies		
	Locking Cylinders Manifolds		
	Oil		
	Power Units		
	Pressure Transducers		
	Pumps		
	Reservoirs		244
	Through-Deck Gland		246
	Valves	.239-	240
	Valve Panels		
	Vang Cylinders	.233-	237
1.0			
lih I	anda 02 104 100 :	110 -	117
JID L	eads93, 104, 109- 119-	110, .120	117, 125
.iih R	eefing and Furling Systems	120,	123
(566	"FURLING")		
(300	TOTILING)		
K	TOTILING)		
K Kits	TOTILING)		
K	Cam Fairlead		
K	Cam FairleadCam Wedges	69	9-70
K	Cam FairleadCam WedgesFurling Lead Block	69	9-70 183
K	Cam Fairlead Cam Wedges Furling Lead Block Lazy Jacks	69	9-70 183 151
K	Cam Fairlead	69)-70 183 151 73
K	Cam Fairlead	69	9-70 183 151 73 161
K	Cam Fairlead	69	9-70 183 151 73 161 115
K	Cam Fairlead	69	9-70 183 151 73 161 115
K	Cam Fairlead	69	9-70 183 151 73 161 115
K Kits	Cam Fairlead	108,	9-70 183 151 73 161 115 221
K Kits	Cam Fairlead	108,	9-70 183 151 73 161 115 221 151 89
K Kits	Cam Fairlead	69	9-70 183 151 73 161 115 221 151 89 100
K Kits	Cam Fairlead	108,	9-70 183 151 73 161 115 221 151 89 100 275
K Kits	Cam Fairlead	108,)-70 183 151 73 161 115 221 151 89 100 275 81
K Kits	Cam Fairlead	108,)-70 183 151 73 161 115 221 151 89 100 275 81
K Kits	Cam Fairlead	108,)-70 183 151 73 161 115 221 151 89 100 275 81
K Kits L Lazy Lead Line- Load LOUF Luff S	Cam Fairlead	108,	9-70 183 151 73 161 115 221 151 89 100 275 81 136
K Kits L Lazy Lead Line- Load LOUF Luff S M	Cam Fairlead	108,98,134,	9-70 183 151 73 161 115 221 151 89 100 275 81 136
Kits Lazy Lead Line-Load LOUF Luff !	Cam Fairlead	69)-70 183 151 73 161 115 221 151 89 100 275 81 136,
Kits Lazy Lead Line-Load LOUF Luff: Main Main Main	Cam Fairlead Cam Wedges Furling Lead Block Lazy Jacks Sail Chafe Protectors Small Boat Furling Traveler Jacks Rings Shedding Endstop Ing Formulas PS Soft-Attachments Slider Car 132, 138, 142, sail Outhaul Car sail Reefing Systems	69 	0-70 183 151 73 161 115 221 151 89 100 275 81 136, 146 151 268
Kits Lazy Lead Line- Load LOUF Luff: Main Main Main Main Main	Cam Fairlead Cam Wedges Furling Lead Block Lazy Jacks Sail Chafe Protectors Small Boat Furling Traveler Jacks Rings Shedding Endstop Ing Formulas PS Soft-Attachments Slider Car 132, 138, 142, sail Outhaul Car sail Reefing Systems Shedd Slock Survey Shedding Endstop 132, 138, 142, Sail Reefing Systems Shedet Systems	69 	0-70 183 151 73 161 115 221 151 89 100 275 81 136, 146 151 268 260
Kits Lazy Lead Line-Load LOUF Luff ! Main Main Main Main Main Main Main	Cam Fairlead Cam Wedges Furling Lead Block Lazy Jacks Sail Chafe Protectors Small Boat Furling Traveler Winch Service Jacks Rings Shedding Endstop Ing Formulas PS Soft-Attachments Slider Car 132, 138, 142, sail, Luff Cars 138, 142, sail Outhaul Car sail Reefing Systems Sheet Systems Drawings Leave Medden 148, 149, 158, 149	108,	0-70 183 151 73 161 115 221 151 89 100 275 81 136, 146 151 268 260 254
Kits Lazy Lead Line-Load LOUF Luff (Main Main Main Main Main Main Main Main	Cam Fairlead Cam Wedges Furling Lead Block Lazy Jacks Sail Chafe Protectors Small Boat Furling Traveler Winch Service Jacks Rings Shedding Endstop ing Formulas PS Soft-Attachments Slider Car 132, 138, 142, sail, Luff Cars sail Reefing Systems sheet Systems Drawings tenance folds, Hydraulic	69 	0-70 183 151 73 161 115 221 151 89 100 275 81 136, 146 151 268 260 254 240
Kits Lazy Lead Line-Load LOUF Luff: Main Main Main Main Main Main Main Mani Mast	Cam Fairlead	69 	9-70 183 151 73 161 115 221 151 89 100 275 81 136 146 151 268 260 254 240 3-60
Kits L Lazy Lead Line- Load LOUF Luff: Main Main Main Main Main Main Main Main	Cam Fairlead	69 	9-70 183 151 73 161 115 221 151 89 100 275 81 136 146 151 268 260 254 240 3-60 3, 77
Kits L Lazy Lead Line- Load LOUF Luff: Main Main Main Main Main Main Main Mani Mani	Cam Fairlead	69 	0-70 183 151 73 161 115 221 151 89 100 275 81 136 136, 146 151 268 254 254 240 3-77 270
Kits Lazy Lead Line- Load LOUF Luff: Main Main Main Main Main Main Mani Mant Mast Metri McLu	Cam Fairlead Cam Wedges Furling Lead Block Lazy Jacks Sail Chafe Protectors Small Boat Furling Traveler Jacks Rings Shedding Endstop ing Formulas PS Soft-Attachments Slider Car 132, 138, 142, sail Outhaul Car sail Reefing Systems sheet Systems Drawings tenance folds, Hydraulic base Blocks head Sheaves c Conversions Jee Blocks Lazy Jacks Lazy Jacks 132, 134, 135, 136, 137, 138, 142, 148, 158, 158, 158, 158, 158, 158, 158, 15	69 	0-70 183 151 73 161 115 221 151 89 100 275 81 136 136, 146 151 268 254 254 240 3-77 270
Kits Lazy Lead Line-Load LOUF Luff SM Main Main Main Main Main Mast Metri McLu McLu McLu McLu McLu McLu McLu McLu	Cam Fairlead	69 	0-70 183 151 73 161 115 221 151 89 275 81 136, 146 151 268 260 254 240 8-67 7, 270 169

McLube® Sailkote™ Dry Lubricant169 McLube® Antifoul Alternative™ Polish169 Micro Cam
Oil, Hydraulic245 Outhaul Systems Drawings262
Padeyes
Racing Winches (see "WINCHES") Ratchet Blocks (see "BLOCKS") Reefing and Furling Systems
Safety Information
Shackles Bow 82-83 Captive Halyard 82-83 D Forged 82-83 D High-Resistance 82-83 Large Open 82-83 LOUPS Soft-Attachments 81 Shallow Bow 82-83 Snap 82-83, 189 Spectra®/Dyneema® Braid 81 Stainless Steel 82-83 Stamped 82-83 Twist 82-83 U-Adaptor 82-83 Sheaves
Big Boat75 Cruising ESP75

Halvard		7/ 77
Halyard High-Load		76 77
Midrange	•••••	70, 77
Self-Contained	•••••	14 71
Cmall Doot		14
Small Boat		14
Steering	•••••	/ /
V		/b
Slider Battcars129-	132, 134	1, 136
140-142, 144	, 146, 14	18-150
Slider Rods, Genoa Car Small Boat Blocks (see "BLOC Snap Shackles		119
Small Boat Blocks (see "BLOC	CKS")	
Snap Shackles	82-8	3, 189
Snatch Blocks		64
SnubbAir		191
Soft Shackles		81
Spinnaker Pole Cars		80
Split Backstay Plates	4	1. 159
Springs		72
Stainless Steel Shackles		82-83
Stanchion Mount Base	7	'2 183
Stand-Up		2, 100
Bases		70
Dasts 10 00 46		12
Blocks 19, 20, 46	,-40, 5Z-	JU, 55
Springs		/ 2
Toggles	.103, 10	8, 111
Staysail Furling	16	31-168
Steering Sheaves		77
Stops, Ädjustable Pin	93, 102	2, 104,
107, 113	3-114, 11	19-120
Switches, Electric/Hydraulic W	/inch 20)4-205
Systems Drawings		
Backstay		267
Cunningham		263
Genoa Lead Car		255
Gross-Trim/Fine-Tune	25	260 58-260
Halyard		266
Mainsail Reefing		268
Mainsheet		200 58-260
Mastbase Lead Block		
Outhoud		204
Outhaul		202
Self-Tacking Jib		209
Spinnaker	26	35-266
Traveler	25	06-25/
Vang		261
т		
I		
T-Track		
Battcar Switch System	14	10-148
Cars125, Track124,	142, 14	4, 156
Track124,	143, 14	5, 147
Trysail Switch System		148
Tangs, Split Backstay		41.159
Tiller Extensions		
Track		0 1
Battcar	121 12	3 135
137, 139, 141, 143	1/15 1/	17-1 <i>1</i> 0
Bends	10E 10	I∠J 7 111
Endstops98, 100, 102,	100, 10	/, III,
113, -114, 119-120,	124, 12	0-12/
133, 135, 137, 139,	143, 14	o, 14/
High-Beam92, 94, 98, Low-Beam98,	100, 10	5, 111
Low-Beam98,	100, 106	5, 111,
119)-122, 12	26-127
Pinstop91, 93, 96,	100, 105	5, 111.
109-110, 117, 119, 120	, 125, 12	26-127
Retrofit	.100, 10	5, 111
Risers	10	5, 111
T Trools	100 1	10 1 17

Traveler92-	123
Track BendsTraveler Stand-Up Toggles101, 103, 1	123 06
	116
Traveler Systems Drawings103, 1	08,
116, 256-7	257 เผล
•	140
TRAVELERS	
13 mm Micro 98 Cars98	
Controls	. 99
Track	98
22 mm Small Boat100-104, Cars101,	118 118
Controls	114
Track	100 119
Cars105-110,	118
Controls	107
Track	105 1 22
32 mm Big Boat111-118, 121- Cars112, 117-118, 121-	122
Controls113-	116
Custom117, 121- Track111,	122 121
42 mm Mini-Maxi 119, 121-	122
Cars119, 121-	122
Controls119, 121-	119 122
Track119, 1	121
64 mm Maxi '	122
Cars Controls	122 122
Custom	122
Track	122
Battcars129-	150
CB (Captive Ball) 80, 92, 99, 101, 1	04,
106, 109-110, 112, 117-118, 126- 13 mm Micro	127 90
22 mm Small Boat101,	118
27 mm Midrange106,	118
32 mm Big Boat112, Genoa Leads104, 109-110,	118 117
Outhaul	151
Spinnaker Pole Cars Windward Sheeting	. 80
Crossbow Pivoting Jib Traveler	N/A
CRX (Captive Roller)121-	122
Custom119- Dual Sheave Catamaran Cars119-	122 101
Furling Mainsail Outhaul	151
Genoa Leads104, 109-110, 1	17,
	125 117
CB (Captive Ball)104, 109-110,	117
Custom117, 119-120, Pinstop104, 109-110, 117, 119-	125
Systems Drawings	120 255
T-Track	124
Track Slides	125
Kits103, 108, ⁻ Loop Cars 99, 101, 106, 112, 121-	122
Mainsheet 99, 101, 106, 112, 121-	122
Radial Vang101, 1888 Replacement Kits103, 108, 108, 108, 108, 108, 108, 108, 108	103 115
Riser, Traveler Track105, 106,	111

Ω

Roller (CRX)	121-122
Cars	
Custom	121-122
TrackSelf-Tacking Jib Controls	122
Soft-Attachment Cars99,	
112	121-122
Spinnaker	80
Track 92, 94, 98, 100,	105-106,
111, 119-122	, 125-127
Vang Car	.101, 103
Windward Sheeting	118
U	
U-Adaptors	82-83
Underdeck Furling159	. 178-181
Use Charts	44, 94-95,
Use Charts39, 43-4	228, 247
V	
-	
V Sheaves	/6
Valves, HydraulicVang, Hydraulic	239-240
Vang System Drawings	152-154
Vang Traveler Car	.101. 103
	,
W	
Warranty	
Wedges, Cam	
Wire Sheaves	/4, //
WINCHES	
Air Winches	217
Captive Reel Winches	222-226
Carbon Winches	
Air winches	217
Grand Prix	
Pedestals/Accessories	217_210
Self-Tailing	
Ton Cloating	216-216
Top-Cleating	216-216 213-215
Top-Cleating Wide-Body	216-216 213-215 213-216
Top-Cleating Wide-Body CLR Mooring Winches	216-216 213-215 213-216 206-207
Top-Cleating	216-216 213-215 213-216 206-207 205
Top-Cleating	216-216 213-215 213-216 206-207 205 218
Top-Cleating	216-216 213-215 213-216 206-207 205 218 204
Top-Cleating	216-216 213-215 213-216 206-207 205 218 204 204-205 212-218
Top-Cleating	216-216 213-215 213-216 206-207 205 218 204 204-205 212-218
Top-Cleating	216-216213-215213-216206-207205204204-205212-218
Top-Cleating	216-216 213-215 213-216 206-207
Top-Cleating	216-216213-215213-216206-207204204-205219-220219
Top-Cleating	216-216213-215213-216206-207205204204-205212-218219-220219
Top-Cleating	216-216213-215213-216206-207205204204-205212-218219-220219
Top-Cleating	216-216213-215213-216206-207205204204-205219-220
Top-Cleating	216-216213-215213-216206-207205204204-205219-220219219
Top-Cleating	216-216213-215213-216206-207205204204-205219-220219210210210210211211211
Top-Cleating	216-216213-215213-216206-207205204204-205219-220219-220219219.220219.220210211208, 211211211211
Top-Cleating	216-216213-215213-216206-207
Top-Cleating	216-216213-215213-216206-207205204204219219
Top-Cleating	216-216213-215213-216206-207205204204
Top-Cleating	216-216213-215213-216206-207205204204
Top-Cleating	216-216213-215213-216206-207
Top-Cleating	216-216213-215213-216206-207204204-205219-220219-220211211211
Top-Cleating	216-216213-215213-216206-207204204-205219-220219-220219211211211211211211211211

Universal Joints		218
Performa	.200	·203
Plain-Top		202
Powered	201,	203
Quattro		202
Self-Tailing	.200	-203
Plain-Top195-196, 202.	210-	211
Powered 193, 1	197-	199,
201, 203-211,	222	227
Captive Reel Winches	.222	-226
Circuit Breakers		204
CLR Mooring Winches	.206-	-207
Control Boxes		204
Electric 193, 197-199, 201,	202-	211
Hydraulic 193, 197, 201, 203,	208-	211
Megayacht	208-	211
Performa		
Racing201, 203,	213	-215
Radial Line 193	197	199
Radial Line 193, Electric193,	197	199
Hydraulic	103	197
Rewind		
UniPower		102
Reel Winches	 . 222.	226
Switches		
Quattro		
Racing200-203,		202
Radial Line		
Aluminum194,	100	100
Propos 106	190	100
Bronze196, Chrome194-195,	190	100
Ulli Ullie 194-195,	190	106
Plain-Top	. 190	190
Powered 193,	197	100
Electric193,	197	107
Hydraulic	193,	197
Rewind		
UniPower		
Single-Speed Self-Tailing 194-		
Three-Speed Self-Tailing	. 195-	197
Two-Speed Self-Tailing 194-	197,	199
White195,	198	199
Reel Winches, Electric/Hydraulic	.222-	-226
Self-Tailing Winches 192-203,	208-	216
Single-Speed Winches194-197,	198,	202
SnubbAir		191
SpeedGrip Winch Handles	.219-	-220
Three-Speed Winches	194-	197,
	208-	215
Two-Speed Winches1919	197,	199,
202-203, 208-	213,	215
Y		
N	_	
X-Treme Angle Fairleads	6	5-/0

Part No.	Page No.	Part No.	Page No.	Part No.	Page No.	Part No.	Page No.
001			159, 160	263			19
010			161		100		19
	36		35	265			19
047			35		123		19
061			35	275	123		19
062	•		35		123		19
071.PAIR			37		74		68
072			102		68		32
073.PAIR	, , , , ,		102		69, 70, 84		72
074			103	282.PAIR	69, 70, 84	370	72
077		176		283	69. 70		19
082			271, 272, 273		73		100
083			35		123		100
084			37	287			100
085			36	288			100
086			69, 70, 84		36		100
087			71		33		69, 70
088			37		69, 70		32
089			159, 160		69, 70		33
093			160		69, 70		71
096	•		161		69. 70		19
097.PAIR			71		69, 70		101
098			36		69, 70		38
099			36	300	,		103
100			36	301		385	
106			33	302			38
108			33	303			32
			33		41		73
109			33		**41		19
112	•		33		41		19
	- ,		33		74		38
113 125				308			
			33				38
126				309			71
127			33	310			71
128			33		74		32
129			33		41		32
130			33		41		32
131			73		41		32
134			71		41		32
137.PAIR			71		68		32
138	•		71		68		68
144			71		38		74
145	-		33		73		32
146			33		19		32
147			33		19		84
150			33		19		32
160			82, 83		19		69, 70
161			151		19		69, 70
162		253	151		19		38
163	161	254	151	346	19	432	32

Part No.	Page No.	Part No.	Page No.	Part No.	Page No.	Part No.	Page No.
	73		123		123	1567	
	161		159		123	1571	
	161		68		123	1574	
	161		273		123	1581	
	32		159	795	123	1582	
	69		159		189	1584	
442	32	494	69, 70	885	189	1586	•
	33		69, 70	891	189	1598	82, 83
445.PAIR	84	496	68	944	189	1602.8	105
446	102	497	68	945	189	1602.12	105
448	35, 60, 189	498	68	947	73, 189	1603	72
450	93	499	68	1134	161	1605.4	105
452P	93	500	75	1200	31	1605.6	105
452S	93	518	75	1201	31	1606	*105
453.9.5	93	519	75	1202	31	1619	105, 139
453.12	93	520	75	1203	31	1621	105
453.15	93	547	271, 272, 273	1204	31	1622	
453.18	93	548	111		31	1628	
	93		145		191	1629	
458	68	550	75	1301	191	1631	
459	68		111	1522	105	1632	107
	72	576	123	1522ASSY	145	1633	
461	72	577	123		105	1634	72
	82, 83		75		271, 272, 273	1635	105, 118
	159, 160		85, 88		123	1636	*
465	159, 160		85, 88		123	1637	118
	41		71		123	1642	
	32		85, 88		123	1643	
	68		75		123	1645	
	68		120		123	1646	
	68		120		74	1647	
	68		120		74	1648	
	68		120		75	1649	
	68		120		40	1652	
	68		85		40	1654	
	69, 70		85		40	1655	
	69, 70		77		40	1702	
	159		77		40	1706.1.5m	
	159		77 77		40	1706.3m	
	159		77 77		40	1706.3.6m	
	159		77		40	1706.6m 1707	
	159		77 77		40 40		
	159		79		40	1708 1734	
			79			1777	
	159		79		84 40		*
	159, 160 161		79 77		40	1835.2m 1835.4m	
	123		77 77		40	1836	
	123		123		40	1849	
	123		123		40	1867	
⊣ ∪1	123	7 30	123	1000	40	*New parts **Fasteners supplied	

Part No.	Page No.	Part No.	Page No.	Part No.	Page No.	Part No.	Page No.
1878	160	2144	30	2609	25	2660	23
1880	160	2145	30	2610	25	2661	
1888.2m		2146	18	2611	25	2662	23
1888.4m	124	2147	18	2612	26	2663	23
1889	126	2148		2613	26	2664	23
1947	115	2149	18	2614	**25	2665	23
1948	115	2150	18	2615	22	2666	23
1949	115	2151	18	2616	22	2667	23
1981	56	2152	18	2617	22	2668	23
1984	56	2153	18	2618	22	2669	23
1986	60	2154	81	2619	26	2670	24, 25
1987	61	2155	81	2621	29	2671	25
1988	60	2156	21	2622	29	2672	**25
1989	61	2157	21	2623	29	2673	29
1990		2158		2624	29	2674	29
2103	82, 83	2159		2625	24, 27	2675	29
2104	•	2160		2625.HTE	24	2676	
2105	- ,	2160.RED		2625.RED	27	2677	23
2106	82. 83	2161	16	2626		2678	
2107	•	2162	•	2626.RED		2679	
2108	- ,	2163		2627		2680	
2109	, , , , ,	2165		2628		2681	,
2110	•	2165.HTE		2629		2682	
2111	•	2166		2630		2683	
2112	- ,	2167		2631		2684	
2115	•	2168		2632		2685	
2116	•	2168.HTE		2633		2686	
2117	•	2169		2634		2687	
2118	, , , , ,	2170		2636		2688	
2119	•	2171		2637		2689	•
2119	- ,	2172		2638		2690	•
2123	- ,	2173		2639	, -	2691	
2123 2124	•	2174		2640		2692	
212 4 2125	•	2175		2641		2693	
2125 2126	•		24	2642		2694	
2120 2127		2177		2643		2695	
2127 2131	•	2178		2644		2696	
2132 2132	•	2179		2645		2697	
	•	2180		2646		2698	
2133 2134		2181		2647		2700	
2134 2135		2182				2700	
		2183		2648			
2135.RED				2649		2702	
2136		2600		2650	,	2703	
2137		2601		2652		2704	
2138		2602		2654		2705	
2139		2603		2655		2706	
	26	2604		2656		2707.600mm	
	26	2605		2657		2707.1m	· ·
2142		2606		2658		2707.1.2m	•
21432	30	2608	25	2659	20	2707.2m *New parts **Fasteners supplied	98, 133

Part No.	Page No.	Part No.	Page No.	Part No.	Page No.	Part No.	Page No.
2707.2.5m		2745			80	3220	
2708	*	2746			80	3222	
2709.1m	·	2747			61	3223	•
2709.1.2m		2748			60	3224	
2709.2m		2749		3139	81	3225	
2710		2750			81	3226	
2711	98	2750/2151/369	104	3141	81	3227	52
2720.600mm		2751.600mm	100	3142	81	3228	52
2720.1m	·	2751.1m	100	3143	81	3229	52
720.1.2m	100, 135	2751.1.5m		3144	81	3230	53
720.1.5m		2751.2m	100	3145	81	3231	53
2720.1.8m	100, 135	2751.3.6m	100	3146	81	3232	53
720.2.1m	100, 135	2752	118	3147	81	3233	53
720.2.5m	100, 135	2753	103	3148	81	3234	57
720.3m	100, 135	2754	101	3149	81	3235	57
720.3.6m	100, 135	2754.NW	101	3150	81	3236	57
720.6m		2755	102	3153	111, 141	3237	57
721.1.2m	100	2756	101	3157	111	3238	56
721.1.5m	100	2757	101	3158	111	3239	56
721.1.8m	100	2757.NW	101	3159.8	111	3240	57
721.3.6m	100	2759	85, 103	3159.12	111	3241	53
722	100	2760	74	3168	113, 114	3242	53
723	100	2761	82, 83	3169	113, 114	3243	53
724	100, 135	2762	22	3170	113, 114	3244	53
725.1m	100	2763	103	3173	113, 114	3245	54
725.1.2m	100	2764	103	3174	113, 114	3246	54
725.1.5m	100	2765	101	3176	111, 118	3247	54
725.1.8m	100	2766	101	3177	111, 118	3248	54
725.3.6m	100	2767	*99	3178	111, 118	3249	57
726	101	2768	*101	3179	111, 118	3250	57
726.NW	101	3002	61	3180	118	3251	56
727	101	3003	61	3188	80	3252	56
727.NW	101	3004	61	3189	80	3253	57
728	101	3035	56	3190	115	3254	54
728.NW	101	3036	56	3192	60	3255	55
729	101	3037	56	3197	113, 114	3256	55
730	101	3038	56	3200.3m	122	3257	57
731	101	3068	119	3202	81	3258	57
732	101	3069	119	3203	81	3259	56
733	101	3071	120	3206	85	3260	56
734	101	3074	121, 122	3207	85	3261	55
734HL	101	3075	121, 122	3211	54	3262	55
735	101	3076	151	3212	113, 114	3263	57
735.NW	101	3079.2m	122	3213	113, 114	3264	
736		3079.3m	122		52	3265	56
736.NW	101	3080	122		52	3266	55
740	102, 104	3086.2m	124		52	3267	55
741	102	3086.3m	124	3217	52	3269	89
742		3096	151	3218	52	3270	89
743	102	3097	80	3219	52	3271 *New parts	89

Part No.	Page No.	Part No.	Page No.	Part No.	Page No.	Part No.	Page No
3272			76		137		
3272			76		137		136, 136
3274			76		137		137. 150
3275			52		137		144
3276			*52		137		144
3277			*53		137		144
3278			111		137		144
3279			111		137, 150		*134
3280			134, 150		137		*134
3281			134, 150		139		*137
3282			135		139		*137
3283.PAIR			135		139		*142
3284.PAIR			135		137, 150		*142
3287			135		137		*137
3288			135		137, 150		146
3294			135		139		146
3294AL			135		139		146
3295			134, 150		137, 150		146
3295AL			134				146
3296			134, 150				146
3296AL			134				146
3290AL 3297			132, 150				140
3297 3297AL					137, 137		146
3297 AL 3299			132, 150				
3300			*		137		146 146
			132, 150		137		
3301			133				146
3302			133		138, 150		148
3303			133		138, 150		148
3304	•		133				148
3355	•		133		138, 150		147
3356			133				147
3357			133		138, 150		147
3358			135		138, 150		147, 150
3362AL			135		139		147, 150
3363AL			135		138, 144		147, 150
3366AL			134, 150		138, 144		147
3367AL			134, 150		135		147
3368AL			134, 150		135		147
3369AL			134		137		138
3370AL			134, 150		134, 150		*145
3371AL			134		134, 150		*145
3372AL			134, 150		134, 150		60
3375			134	3883.NW	134		60
3376			137, 150		145		60
3377			137, 150		145		74
3378		3835	137, 150	3886	145		74
3379	76	3836	137, 150	3887	145		74
3380	76	3837	133	3888	145		60
3381	76		137	3889	134, 150	6068	58
3383	76	3845	137	3890	138, 150	6069	58

Part No.	Page No.	Part No.	Page No.	Part No.	Page No.	Part No.	Page No.
6070	58	6274	47	7312.21 3/4	171, 175, 177	7357	165, 166
6071	58	6275	47	7312.22 5/8	171		165, 166
6072	58	6276	47		171, 175, 177	7359	183
6073		6277	47	7313.21 7/8	171, 175, 177	7360	183
6074		6278	47		165	7361.10	166
6075	58	6280	48	7351.10.18m	165	7362.10	166
6076	58	6290	48	7351.10.20m	165		167
6079	58	6291	48	7351.10BASE	168	7367	167
6080	58	6292	48	7351.20	166	7371	165, 166
6081	58	6293	48	7351.21	165, 166	7371.SP00L	165, 166
6087		6294	48	7351.22	165, 168		165, 166
6089	58	6295	48	7351.23	168	7372.SP00L	165, 166
6095	60	6296	48	7351.24	168	7373	167
6096	60		48	7351.26	165	7373.SP00L	167
6097		6298	48	7351.27	166		183
6098			48		165, 166		183
6107			158		165, 166		183
6220			158		166		183
6221			158		165		183
6222			158		165		183
6230			158		165		189
6231			158		165		176, 182
6232			158		168		180
6233			158		168		171, 174, 176
6234			158		165, 168		
6235			158				171, 174, 176 171, 174, 176
6236			158		168		
6237			158		168		176, 180, 182
6238					165		176, 180
6239			158 158		165		176, 182
	•				165, 166		180
6240			158, 189 91		,		171, 174, 176
6241					165, 166		176, 180, 182
6242			91		166		176, 180
6243			91		165		177, 182
6250			91		167		181
6251			91		167		171, 175, 177
6260			91		168		177, 181, 182
6261			91		167		177, 181
6262			91		167		177, 182
6263			189	7353.22	167, 168		181
6264	47	7302	189	7353.23	168		181
6265			189		168		186
6266	47		189	7353.26	167		171, 175, 177
6267	47		171, 174, 176	7353.27	167		171, 175, 177
6268	47		171, 174, 176		167		171
6269			171, 174, 176	7353.37	167		171
6270	47	7311.21 5/8	171, 174, 176	7353.38	167		186
6271	47	7312.20 5/8	171, 175, 177	7353.39	167	7413.25 7/8	186
6272	47	7312.20 3/4	171, 175, 177	7355	165, 183	7413.30	177, 181, 182, 186
6273	47	7312.21 5/8	171, 175, 177	7356	165, 183	7413.31 *New parts **Fasteners supplie	177, 181, 186 ed 28

Part No.	Page No.	Part No.	Page No.	Part No.	Page No.	Part No.	Page No.
7414.10		7502			87	G272B	
7414.15L	,	7503		9071.1828		G273B	*
7414.15S		7504		9072.1013		G273B.HL	·
7414.20 7/8		7505		9072.1318		G274B	
7414.20 1		7506		9072.1828		G274B.HL	· ·
7414.20 1 1/8		7507		9072.2848		G276S	•
7414.25 7/8		7508		9072.L00P		G276S.HL	•
7414.25 1		7509	• • • • • • • • • • • • • • • • • • • •	9072.PADEYE		G321B.HL	*
7414.25 1 1/8		7510		9073.1013		G322B.HL	
7414.30		7510.10		9073.1318		G323B	
7414.31		7510.30		9073.1828		G323B.NW	
7414.31L		7510.31		9073.2848		G324B	
7414.31S		7511		9073.LOOP		G326S	
7415.15L		7511.10		9073.PADEYE		G326S.HL	
7415.15M		7511.30		9074.1013		G2227B	
7415.15W		7511.31	•	9074.1318		G2227B.NW	
7415.155		7512.10		9074.1828		G2247B	
7415.25 1 1/6		7512.30		9074.2848		G2727B	
7415.25 X X/X		7512.31		9074.LOOP		G2737B	*
		7513.10		9074.LOOF 9074.PADEYE		G2737B	*
7415.30		7513.10	-,	9074.FADETE			,
7415.31L			*	9075.1013		G2747B	,
7415.31M		7513.20 1 1/8	*			G2747B.NW	
7415.31S		7513.21 1		9075.1828		G2747B.HL	*
7416.15L		7513.21 1 1/8	,	9075.2848		G3237B	
7416.15M		7513.30		9075.LOOP		G3247B	
7416.15S		7513.31		9075.PADEYE		G3247B.NW	
7416.25 1 1/4		7875			102	GT326S	
7416.25 1 3/8		7880			102	HC6107	
7416.25 1 9/16		7881			102	HC7224	
7416.25 X X/X		9000		E2700		HC7316	
7416.30		9001		E2730	- , -	HC7322	
7416.31L		9002		E2750	,	HC7324	
7416.31M		9003		E2750HB	•	HC7325	
7416.31S		9005		E2756		HC7327	
741X.25 X/X		9006		E3200		HC7340	
741X.26 X/X		9007		E3230		HC7343	
7420 -4		9008		E3230.HL		HC7382	
7421 -6		9050		E3250		HC7388	
7422 -8		9051		E3250.HL		HC7389	
7423 -10		9052		E3250HB	113, 114	HC7391	· ·
7424 -12 17	74, 175, 176, 177	9060	87	E3256	113, 114	HC7403	
7425 -17	· ·	9061	87	FW250EA12H	49	HC7466	
7426 -22	175, 177, 186	9062	87	FW250EA24H	49	HC7493	144
7427 -30	175, 177, 186	9063	87	FW250HA	49	HC7827	143
7428 -40	175, 177, 186	9064	87	FW500EA12H	49	HC7852	88
7429 -48	175, 177, 186	9070.0608	87	FW500EA24H	49	HC7904HL	142
7430	189	9070.0810	87	FW500HA	49	HC7905	142
7431	189	9070.1013	87	G222B	104	HC7905HL	142
7500	154	9071.0810	87	G224B	104	HC7906	142
7501	154	9071.1013	87	G226S	104	HC7906HL	142
36						*New parts **Fasteners supplied	

Part No.	Page No.	Part No.	Page No.	Part No.	Page No.	Part No.	Page No.
HC8076	144	HC9091	59	R27.1.2m	105, 137	T3204B.HL	112
HC8098	144	HC9092	59	R27.1.5m	105, 137	T3205B	112
HC8099	144	HC9093	59	R27.1.8m	105, 137	T3205B.HL	112
HC8125	144	HC9106	143	R27.2m	105, 137	T3209B	111, 112
HC8147	145	HC9107	143	R27.2.5m	105, 137	T3209B.HL	112
HC8148	145	HC9108	143	R27.3m	105, 137	T3221B	112
HC8149	145	HC9503	91	R27.3.6m	105, 137	T3221B.HL	112
HC8150	145	HC9504	91	R27.6m	105, 137	T3231B	112
HC8207	88	HC9597	143	R27HB.1m	105	T3231B.HL	112
HC8220	145	HC9639	91	R27HB.1.5m	105	T3241B	112
HC8221		HC9702	143	R27HB.1.8m	105	T3241B.HL	112
HC8222	145	HC9703	143	R27HB.2.5m	105	T32KIT	108, 115
HC8224		HC9704	143	R27HB.3.6m	105	T32KIT.HL	
HC8226		HC9733		R32.1m		VM13240	
HC8227		HC9953		R32.1mHDP		VM24353	
HC8230		HC9985		R32.1.5m		VM33444	
HC8537		HC9986		R32.1.8m	,	VM44656	
HC8537HL		HC9987		R32.2.1m	*	VM54860	
HC8631		HC9990		R32.2.4m	*	VM66274	
HC8633		HC10041		R32.3m		VM76274	
		HC10060		R32.3.6m	,		
HC8635					,	VM87385	
HC8639		HC10066		R32.6m		VMB12	
HC8640		HC10417		R32HB.1.5m		VMB34	
HC8657		HC11662		R32HB.1.8m		VMB56	
HC8667		HC11663		R32HB.2.5m		VMBF12	
HC8670		HSB534		R32HB.3.6m		VMBF34	
HC8673		HSB538		R32HB.4.5m		VMBF56	
HC8674		IN1642		T2701B		VMM12	
HC8675		IN1642.CLEAR		T2701B.NW		VMM34	
HC8798		IN1643.3m		T2701B.HL		VMM56	
HC8799		IN1643.3m.CLR	•	T2701B.HL.NW		VMP2	
HC8800		IN1643.3.6m		T2703B		VMP3	*155
HC8811		IN1643.3.6m.CLR		T2703B.HL		STANDARD WINC	HE6
HC8879	145, 150	IN1643.6m	127	T2704B.HL	106		ILO
HC8880	145, 150	IN1643.6m.CLR	126, 127	T2705B	106	Performa	
HC8918	143	IN1649	126, 127	T2705B.HL	106	20STP	
HC8919	143	IN1650.3m	127	T2721B	106	20.2PTBBB	
HC8921	143	IN1650.3m.CLR	126, 127	T2721B.HL	106	20.2PTCCC	195
HC8932	59	IN1650.3.6m	127	T2731B	106	20.2PTP	202
HC9045	144	IN1650.3.6m.CLR	126, 127	T2731B.HL	106	35.2PTBBB	196
HC9046	144	IN1651	126, 127	T2741B	106	35.2PTCCC	195
HC9076	59	IN9561	127	T2741B.HL		35.2PTP	202
HC9077		IN9561.CLEAR		T27KIT		35.2STP	202
HC9078		IN9606		T3201B		40STQP	202
HC9081		IN9606.CLEAR		T3201B.NW		40.2PTBBB	196
HC9082		IN10567		T3201B.HL		40.2PTCCC	195
HC9083		IN10567.CLEAR		T3201B.HL.NW		40.2PTP	
HC9086		Marine Grip		T3203B		40.2STP	
НС9086		R27.1m		T3203B		46STQP	
						46.2PTBBB	
HC9088	59	R27.1mHDP	105, 13/	T3204B	111, 112	*New parts **Fasteners supplied	28

Part No.	Page No.	Part No.	Page No.	Part No.	Page No.	Part No.	Page No.
46.2PTCCC	195	60.3STCW	195	ELECTRIC COMPONE	NTS	223, 224, 225, 226	
46.2PTP	202	70.2STA	194	B40PDR	203		
46.2STP	202	70.2STBBB	196	B46PDR		CARBON FIBER WINCHES	3
50.2PTBBB	196	70.2STC	194	B50PDR		<u>212, 213, 214, 215</u>	
50.2PTCCC	195	70.2STCCC	195	B60PDR			
50.2PTP	202	70.2STCW	195	B60.3PDR		CLR MOORING WINCHES	207
50.2STP	202	70.3STA	194	B70PDR		CLR600	207
50.3STP	202	70.3STBBB	196	B70.3PDR		CLR1200	
60.2STP	202	70.3STC	194	B80PDR		CLR2500	
60.3STP	202	70.3STCCC	195	B80.3PDR		CLR4000	
70.2STP	202	70.3STCW	195			CLR8000	
70.3STP		80.2STA	194	BRS102/P		CLR12000	
80.2STP		80.2STC	194	BRS102/S		0L1112000	201
80.3STP		80.3STA		BRS104/P		WINCH ACCESSORIES	
Radial		80.3STC		DSDBK1		Service Kits	
15STA	194	Classic Style		DSDBK2		BK4512	221
20STA		B6A		DSDBK3		BK4513	
20STBBB		B6BBA		DSDSS1		BK4514	
20STC		B6CCA		DSDSS2		BK4515	
20STCCC		B8A		DSDSS3		BK4516	
20STCW		B8BBA		DSSBK4		BK4517	
35.2STA		B8CCA		DSSSS4		BK4518	
35.2STBBB		D000A	133	HCP1717		BK4519	
35.2STC		ELECTRIC WINCHES		HCP1718		BK4521	
35.2STCCC		Performa		HCP1719		Winch Handles	221
35.2STCW		40.2STEP	*203	HCP1720		B8AL	220
40.2STA		46.2STEP		Dual Function Control B	oxes204	B8AP	
40.2STBBB		50.2STEP		HYDRAULIC WINCH	FS		
40.2STC		60.2STEP				B8ASG B8ASGLP	
40.2STCCC		60.3STEP		Performa			
40.2STCW		70.2STEP		46.2STHP		B8BL	
		70.3STEP		50.2STHP		B8CL	
46.2STA		80.2STEP		60.2STHP		B8CSG	
46.2STBBB		80.3STEP		60.3STHP		B10ADL	
46.2STC		Radial	203	70.2STHP		B10AL	
46.2STCCC			*100	70.3STHP		B10AP	
46.2STCW		40RW		80.2STHP	*203	B10ASG	
50.2STA		46RW		80.3STHP	*203	B10BL	
50.2STBBB		60RW		Radial		B10CL	
50.2STC		35.2STE		46.2STH	*197	B10CSG	
50.2STCCC		40.2STE		50.2STH	*197	B10H0T	219
50.2STCW		46.2STE		60.2STH	*197	HYDRAULICS	
60.2STA		50.2STE		60.3STH	*197		
60.2STBBB		60.2STE		70.2STH	*197	Boom Vangs	
60.2STC		60.3STE		70.3STH	*197	HYCV	
60.2STCCC	195	70.2STE		80.2STH		Custom G Vangs	*237
60.2STCW		70.3STE		80.3STH		Compact Control Panel	
60.3STA	194	80.2STE				HYACXPXB1J	242
60.3STBBB	196	80.3STE		AIR WINCHES	216	Cylinders	
60.3STC	194	500UPW		CARTINE REEL WING	NILE C	HYCL	
60.3STCCC	195	900UPW	*198	CAPTIVE REEL WING	игу	HYCP	234

*New parts **Fasteners supplied

	No.	No.	No.	Page No.	No.	Page No.
No.						121, 122
		246				
				·		
	_	240		,		
	•	2/13				
		240				
	•	*240				
		240				
		244				
240						*63
245						
		244		· ·		
		246				
		240				
200		240				
*240						
	111 VDOF1	240				
	CUSTOM PRODUCTS					
	-	105				
240					01020/	89
0.41						
	232, 238 oggles 235 .	oggles HYAMXPGF1J	August A	oggles HYAMXPGF1J 241 C6762 235 HYAMXPGF2J 241 C6779 235 HYAMXPGS1J 241 C6795 235 HYAMXPGS2J 241 C6795 235 HYASXPGB1J 241 C7513 235 HYASXPGB2J 241 C7754 235 HYASXPGC1J 241 C7788 235 HYASXPGF2J 241 C7842 235 HYASXPGF1J 241 C8322 235 HYASXPGF2J 241 C8378 235 HYASXPGS2J 241 C8878 235 HYASXPGS2J 241 C8863 235 HYASXPGS2J 241 C8862 235 HYASXPGS2J 241 C8878 235 HYASXPGS2J 241 C8862 235 HYASXPGS2J 241 C8862 235 HYASXPGS2J 246 C8872 235 HYZHPS20N-3 246 C8872 235	oggles HYAMXPGF1J 241 C6762 ***119 .235 HYAMXPGF2J .241 C6779 .88 .235 HYAMXPGS1J .241 C6795 .117 .235 HYAMXPGS2J .241 C7613 .119 .235 HYASXPGBIJ .241 C7754 .127 .235 HYASXPGCJ .241 C7754 .127 .235 HYASXPGCJ .241 C7788 .127 .235 HYASXPGCJ .241 C7842 .77 .235 HYASXPGCJ .241 C88378 .122 .235 HYASXPGSJ .241 C8838 .122 .235 HYASXPGSJ .241 C8862 .121, 122 .235 HYASXPGSJ .241 C8862 .121, 122 .235 HYASXPGSJ .241 C8862 .121, 122 .235 HYASXPGSDJ .241 C8862 .121, 122 .235 HYASXPGSDJ .246 C8872 .121	orggles HYAMMPGFIJ 241 C6762 1119 C10768 235 HYAMMPGFIJ 241 C6779 8.8 C10879 235 HYAMMPGSIJ 241 C6795 117 C109011 235 HYAMSPGSIJ 241 C6795 117 C109011 235 HYASSPGBIJ 241 C7754 127 C11003 235 HYASSPGGIJ 241 C7754 127 C11003 235 HYASSPGGIJ 241 C7842 .77 C11177 235 HYASSPGGIJ 241 C8322 .61 C11349 235 HYASSPGFIJ 241 C8322 .61 C11349 235 HYASSPGSJ 241 C8583 120 C11432 235 HYASSPGSJ 241 C8583 120 C11432 235 HYZHPSCON-4 246 C88774 *125 C12237 235 HYZHPSCON-4 246 C88914 *122 C12244

S

CORPORATE HEADOUARTERS

Harken Inc.. USA

One Harken Way N15W24983 Bluemound Road Pewaukee, Wisconsin 53072 USA T: (262) 691-3320 F: (262) 701-5780 E: harken@harken.com www.harken.com

USA SALES OFFICES

Harken East (Trade Only) 19 John Clarke Rd. Middletown, RI 02842 T: (401) 849-8278 F: (401) 841-5070

Harken Southeast (Trade Only)

Peter Doyle T: (716) 445-7368 E: peter.doyle@harken.com

Harken West

Rusty Rutherford T: (949) 877-2727 E: rusty.rutherford@harken.com

Harken Italy S.p.A.

Via Marco Biagi, 14 22070 Limido Comasco (CO) Italy T: (39) 031.3523511 F: (39) 031.3520031 E: info@harken.it www.harken.it

Argentina

Harken Argentina Del Arca 59 1646 San Fernando, Buenos Aires Argentina T: +54-11-4725-0200 F: +54-11-4746-7561 E: info@harken.com.ar

Austria

Peter Frisch GmbH Isar-Ring 11, D-80805 München, Germany T: (49) 89-365075 F: (49) 89-365078 E: info@frisch.de www.frisch.de

Brazil

Harken Brazil Av. Princesa Isabel, 2095, Barra Velha CEP 11630-000, Ilhabela, SP, Brazil T: +55 12 3895 8754 F: +55 12 3895-8779 E: brasil@harken.com.br www.harken.com.br

Canada

Western Marine Company 1494 Powell Street Vancouver, BC, Canada V5L 5B5 T: (604) 253-7721 T: (800) 663-0600 F: (604) 253-2656 E: sales@westernmarine.com www.westernmarine.com

Transat Marine Division of Western Marine 70 Ellis Drive, Unit #1 Barrie, ON L4N 8Z3, Canada T: (705) 721-0143 T: (800) 565-9561 F: (705) 721-0747 E: info@transatmarine.com www.transatmarine.com

Caribbean

Budget Marine Antigua Jolly Harbour Boatyard Boláns, Antigua T: 268-462-8753 F: 268-462-7727 E: antigua@budgetmarine.com

Budget Marine Antigua The Compton Building Dockyard Drive English Harbour St Paul's, Antigua T: 268 562 8443 F: 268 462 7727 E: antigua@budgetmarine.com

Budget Marine Antigua North Sound Marina Crabbs Peninsula, Antigua T: 268-562-8753 E: antigua@budgetmarine.com

Budget Marine Aruba Balashi 75-B, P.O. Box 162 Oranjestad, Aruba T: 297-585-3796 F: 297-585-3798 E: aruba@budgetmarine.com

Budget Marine Bonaire Kaya Neerlandia 21 Kralendijk, Bonaire Dutch Caribbean T: 599-717-3710 F: 599-717-3523 E: bonaire@budgetmarine.com

Budget Marine Curação Caracasbaaiweg 202 Curaçao, Dutch Caribbean T: 5999-462-7733 F: 5999-462-7755 E: curacao@budgetmarine.com

Budget Marine Grenada Spice Isle Marina, True Blue Bay St. George Grenada T: 473-439-1983 F: 473-439-2037 E: grenada@budgetmarine.com

Budget Marine St.Maarten Waterfront Road 25B Cole Bay, St. Maarten Dutch Caribbean T: 721-544-3134 E: stmaarten@budgetmarine.com

Budget Marine St. Thomas 6198 Estate Frydenhoj St. Thomas, VI 00802 U.S. Virgin Islands T: 340-779-2219 E: stthomas@budgetmarine.com

Budget Marine Tortola Nanny Cay Resort Tortola, British Virgin Islands T: 284-494-6588 284-494-0792 E: tortola@budgetmarine.com

Budget Marine Trinidad Western Main Road Chaguaramas Trinidad and Tobago T: 868-634-2006 F: 868-634-4382 E: trinidad@budgetmarine.com

Richardson's Rigging Services Box 97, Waterfront Drive Tortola, British Virgin Islands T: 284 494-2739 T: 284-499-4774 T: 284-499-4774 E: info@richardsonsrigging.com

Czech Republic Harken Polska Sp. z o.o. ul. Przasnyska 6A 01-756 Warszawa Poland T: +48 22 561 93 93 E: polska@harken.pl www.harken.pl

Windmade Chile Las Tranqueras 117, Of. 607B Las Condes, Santiago, Chile T: +562 29807079 E: sales@windmade.cl www.windmade.cl

China Sunrise Marineware Limited 12th Floor, Building 2, Baiwang Mansion, Shahe West Road, Nanshan District, Shenzhen P.R.China T: 86-755 86650101 F: 86-755 86593878 E: sales@sunrisemw.com www.sunrisemw.com

SHANGHAI Far East FRP Boat Co., Ltd. Room 605, Building 5 No. 898 Xiuwen Rd. Shanghai, China 201199 T: +86 21-67 28 59 76 F: +86 21-67 28 59 76 www.fareastboats.com

CroatiaSailing Point d.o.o. Obala 103, 6320 Portoroz Slovenia T: +386-5-6778125 Mobile: +386 41 418899 E: info@sailing-point.si www.sailing-point.si

Cyprus
Ocean Marine Equipment, Ltd.
245 A&B Saint Andrews
Street, (3035),
P.O. Box 51370, (3504),
Limassol, Cyprus
T: +357 25369731
F: +357 25352976 E: info@oceanmarine.com.cy www.oceanmarine.com.cy

Denmark

Columbus Marine A/S Egegaardsvej 8 4621 Gadstrup Denmark T: +45 4619 1166 E: columbus@columbus-marine.dk www.columbus-marine.dk

Estonia

Sail Tech Oy Veneentekijäntie 10, FIN-00210 Helsinki, Finland T: (358) 9 682 4950 E: : info@sailtech.fi www.sailtech.fi

Finland

Veneentekijäntie 10, FIN-00210 Helsinki, Finland T: (358) 9 682 4950 E: info@sailtech.fi www.sailtech.fi

Germany Peter Frisch GmbH Isar-Ring 11, D-80805 München, Germany T: (49) 89-365075 F: (49) 89-365078 E: info@frisch.de www.frisch.de

Gibraltar

M. Sheppard & Co. Ltd. Waterport, Gibraltar T: 350 200 75148 F: 350 200 42535 E: retail@sheppard.gi www.sheppard.gi

Greece

Tecrep Marine S.A. Akti Moutsopoulou 36 Piraeus 185 36, Greece T: 30 210 4521647 30 210 4184280 E: info@tecrepmarine.gr www.tecrepmarine.gr

Harken Australia Pty, Ltd.

1B Green Street Brookvale, N.S.W., 2100, Australia T: (61) 2-8978-8666 E: sales@harken.com.au www.harken.com.au

Harken Polska Sp. z o.o. ul. Przasnyska 6A 01-756 Warszawa, Poland T: +48 22 561 93 90 E: polska@harken.pl www.harken.pl

Holland/Belgium On-Deck B.V. Leimuderdijk 478a 2156 MX The Netherlands
T: 31 71 331 3366
F: 31 71 331 3387
E: allhands@on-deck.nl www.on-deck.nl

Hong Kong Sunrise Marineware Limited Unit 1,2/F, Hing Wah Industrial Building, 18 HI Yip Street, Yuen Long NT, Hong Kong T: +852 6942 7682 E: sales@sunrisemw.com www.sunrisemw.com

Hungary Peter Frisch GmbH Isar-Ring 11, D-80805 München, Germany T: (49) 89-365075 F: (49) 89-365078 E: info@frisch.de www.frisch.de

Israel
Yamit Y.S.B. Inc.
Marina Tel-Aviv, P.O.B. 6158
Tel-Aviv 61061, Israel
T: (972) 3-527 1777
F: (972) 3-527 1031
E: office@yamitysb.co.il
www.yamitysb.co.il

Harken Japan Ltd. Nishinomiya Hama Nishinomiya City Hyogo Pref., Japan 662-0933 T: (81) 798-22-2520 F: (81) 798-22-2521 E: info@harken.jp

Marine Service Korea Co.,Ltd. #537 Sunplaza Officetel 1443 Woo-dong Haeundae-gu, Busan, Korea 48092 T: +82-51-744-7882 F: +82-51-744-7883 E: totalmarine korea@naver.com www.servicemarine.co.kr

Harken France

ZA Port des Minimes, BP 3064 17032 La Rochelle Cedex 1 France T: (33) 05.46.44.51.20 F: (33) 05.46.44.25.70 E: info@harken.fr www.harken.fr

Sweden

Latvia

Lithuania

Malaysia

Regate
7A Matrozhu Str. Kipsala,
Riga, LV-1048, Latvia
T: +371 24873486

Regate
7A Matrozhu Str. Kipsala,
Riga, LV-1048, Latvia
T: +371 24873486
E: regate@regate.lv
www.harken.lv

Harken Australia
1B Green Street Brookvale,
N.S.W., 2100, Australia
T. (61) 2-8978-8666
E: info@harken.com.au

T32 Ta'Xbiex Wharf, Gzira, Malta T: (356) 21 341533 F: (356) 21 340594 E: info@dagatamarine.com

www.harken.com.au

D'Agata Marine Ltd.

www.dagatamarine.com

Norway Harken Sweden AB Hovdan Poly A/S

Stubberudveien 10 Oslo N-0614, Norway T: (47) 2314 1260 F: (47) 2314 1261

www.equipyacht.com

Portugal

E: hovdan.poly@online.no

E: regate@regate.lv www.harken.lv

Västmannagatan 81b 113 26 Stockholm, Sweden T: (46) 08 222200 F: (46) 0303 61876 E: harken@harken.se www.harken.se

Slovakia Harken Polska Sp. z o.o. ul. Przasnyska 6A 01-756 Warszawa Poland T: +48 22 561 93 93 E: polska@harken.pl www.harken.pl

Slovenia
Sailing Point d.o.o.
Obala 103,
6320 Portoroz, Slovenia
T: +386-5-6778125
Mobile: +386 41 418899
E: info@sailing-point.si www.sailing-point.si

South Africa

South Africa
Harken South Africa
22 Bolt Avenue
Montague Gardens
Cape Town, 7441 South Africa
T: +27 (0) 21 511 3244
F: +27 (0) 21 511 3249
E: info@harken.co.za www.harken.co.za

Spain

Spain
Equipyacht S.L.
Paseo Joan de Borbó s/n
Moll de Llevant – Nave Sur 4ª Planta
Port de Barcelona
08039 Barcelona, Spain
T: +34 932 219 219
F: +34 932 219 578
E: tienda@equipyacht.com
www.equipyacht.com

Harken ProCare - Palma Equipyacht Palma Calle Tetuán 26 07011 - Palma de Mallorca Illes Balears - Spain T: +34 971 570 734 E: palma@equipyacht.com

Switzerland

Harken Swiss Peter Frisch GmbH Isar-Ring 11, D-80805 München, Germany T: (49) 89-365075 F: (49) 89-365078 E: info@frisch.de www.frisch.de

Harken New Zealand, Ltd.

129 Westhaven Dr. Westhaven, Auckland, 1010, New Zealand T: (64) 9-303-3744 F: (64) 9-307-7987 E: info@harken.co.nz www.harken.co.nz www.fostersshipchandlery.co.nz

Harken UK, Ltd.

Bearing House, Ampress Lane Lymington, Hampshire S041 8LW, England T: (44) 01590-689122 F: (44) 01590-610274 E: sales@harken.co.uk www.harken.co.uk

Taiwan

Mercury Marine Supply Co. Ltd. No. 15, Chongshan. Street Siaogang District, Kaohsiung, 812, Taiwan, R.O.C. T: (886) 7-8133233 F: (886) 7-8133236 E: mms46654@ms16.hinet.net

Sunrise Marineware Limited Unit 1, 2/F, Hing Wah Industrial Building, 18 Hi Yip Street, Yuen Long NT, Hong Kong T: +852 6942 7682 E: sales@sunrisemw.com www.sunrisemw.com

Thailand

Inaliand
Rolly Tasker Sails (Thailand) Co., Ltd.
84/2 Moo 2, Chaofa Road T. Vichit,
A. Muang Phuket 83000 Thailand
T: (66) (0) 76 521 591
F: (66) (0) 76 521 590
E: chandlery@rollytasker.com
E: masts@rollytasker.com www.rollytasker.com

Turkev

Denpar Makina San. Ve Tic. A.S Ozbek Sok No:1 Kavacik Beykoz Istanbul, Turkey T: +90 (0) 216 693 35 35 F: +90 (0) 216 693 27 27 E: info@denpar.com www.denpar.com

Ukraine

Harken Polska Sp. z o.o. ul. Przasnyska 6A 01-756 Warszawa, Poland T: +48 22 561 93 93 E: polska@harken.pl www.harken.pl

Uruguay Harken Argentina Del Arca 59 1646 San Fernando Buenos Aires, Argentina T: +54 11 4725 0200 F: +54 11 4746 7561 E: info@harken.com.ar

Israel

www.harken.jp

Singapore
Marintech Marketing (S) Pte. Ltd.
101 Kitchener Road, #02-14
Jalan Besar Plaza
Singapore 208511
T: (65) 62988171
F: (65) 62923869
E: marintech@pacific.net.sg www.marintech.sg

Portugal
Equipyacht S.L.
Paseo Joan de Borbó s/n
Moll de Llevant – Nave Sur 4ª Planta
Port de Barcelona
08039 Barcelona, Spain
T: (34) 932 219 219
F: (34) 932 219 578
E: equipyacht@equipyacht.com

Ihr Fachhändler:
Delfino Segelschule
Hauptstrasse 12
CH-9422 Staad
info@delfinos.ch
www.delfinos.ch

harken.com Email: harken@harken.com

